Absolute concentration robustness: Algebra and geometry
- Autores
- García Puente, Luis David; Gross, Elizabeth; Harrington, Heather A.; Johnston, Matthew; Meshkat, Nicolette; Pérez Millán, Mercedes Soledad; Shiu, Anne
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Motivated by the question of how biological systems maintain homeostasis in changing environments, Shinar and Feinberg introduced in 2010 the concept of absolute concentration robustness (ACR). A biochemical system exhibits ACR in some species if the steady-state value of that species does not depend on initial conditions. Thus, a system with ACR can maintain a constant level of one species even as the initial condition changes. Despite a great deal of interest in ACR in recent years, the following basic question remains open: How can we determine quickly whether a given biochemical system has ACR? Although various approaches to this problem have been proposed, we show that they are incomplete. Accordingly, we present new methods for deciding ACR, which harness computational algebra. We illustrate our results on several biochemical signaling networks.
Fil: García Puente, Luis David. Colorado College; Estados Unidos
Fil: Gross, Elizabeth. University of Hawaii at Manoa; Estados Unidos
Fil: Harrington, Heather A.. University of Oxford; Reino Unido. Technische Universität Dresden; Alemania
Fil: Johnston, Matthew. Lawrence Technological University; Estados Unidos
Fil: Meshkat, Nicolette. Santa Clara University; Estados Unidos
Fil: Pérez Millán, Mercedes Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Shiu, Anne. Texas A&M University; Estados Unidos - Materia
-
ABSOLUTE CONCENTRATION ROBUSTNESS
CHEMICAL REACTION NETWORK THEORY
COMPUTATIONAL ALGEBRAIC GEOMETRY
NUMERICAL ALGEBRAIC GEOMETRY
MASS ACTION SYSTEMS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/265645
Ver los metadatos del registro completo
id |
CONICETDig_ad8ac02fa206c522d31af8f53ee46d36 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/265645 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Absolute concentration robustness: Algebra and geometryGarcía Puente, Luis DavidGross, ElizabethHarrington, Heather A.Johnston, MatthewMeshkat, NicolettePérez Millán, Mercedes SoledadShiu, AnneABSOLUTE CONCENTRATION ROBUSTNESSCHEMICAL REACTION NETWORK THEORYCOMPUTATIONAL ALGEBRAIC GEOMETRYNUMERICAL ALGEBRAIC GEOMETRYMASS ACTION SYSTEMShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Motivated by the question of how biological systems maintain homeostasis in changing environments, Shinar and Feinberg introduced in 2010 the concept of absolute concentration robustness (ACR). A biochemical system exhibits ACR in some species if the steady-state value of that species does not depend on initial conditions. Thus, a system with ACR can maintain a constant level of one species even as the initial condition changes. Despite a great deal of interest in ACR in recent years, the following basic question remains open: How can we determine quickly whether a given biochemical system has ACR? Although various approaches to this problem have been proposed, we show that they are incomplete. Accordingly, we present new methods for deciding ACR, which harness computational algebra. We illustrate our results on several biochemical signaling networks.Fil: García Puente, Luis David. Colorado College; Estados UnidosFil: Gross, Elizabeth. University of Hawaii at Manoa; Estados UnidosFil: Harrington, Heather A.. University of Oxford; Reino Unido. Technische Universität Dresden; AlemaniaFil: Johnston, Matthew. Lawrence Technological University; Estados UnidosFil: Meshkat, Nicolette. Santa Clara University; Estados UnidosFil: Pérez Millán, Mercedes Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Shiu, Anne. Texas A&M University; Estados UnidosAcademic Press Ltd - Elsevier Science Ltd2025-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/265645García Puente, Luis David; Gross, Elizabeth; Harrington, Heather A.; Johnston, Matthew; Meshkat, Nicolette; et al.; Absolute concentration robustness: Algebra and geometry; Academic Press Ltd - Elsevier Science Ltd; Journal Of Symbolic Computation; 128; 5-2025; 1-370747-7171CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0747717124001020info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jsc.2024.102398info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:03:15Zoai:ri.conicet.gov.ar:11336/265645instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:03:15.89CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Absolute concentration robustness: Algebra and geometry |
title |
Absolute concentration robustness: Algebra and geometry |
spellingShingle |
Absolute concentration robustness: Algebra and geometry García Puente, Luis David ABSOLUTE CONCENTRATION ROBUSTNESS CHEMICAL REACTION NETWORK THEORY COMPUTATIONAL ALGEBRAIC GEOMETRY NUMERICAL ALGEBRAIC GEOMETRY MASS ACTION SYSTEMS |
title_short |
Absolute concentration robustness: Algebra and geometry |
title_full |
Absolute concentration robustness: Algebra and geometry |
title_fullStr |
Absolute concentration robustness: Algebra and geometry |
title_full_unstemmed |
Absolute concentration robustness: Algebra and geometry |
title_sort |
Absolute concentration robustness: Algebra and geometry |
dc.creator.none.fl_str_mv |
García Puente, Luis David Gross, Elizabeth Harrington, Heather A. Johnston, Matthew Meshkat, Nicolette Pérez Millán, Mercedes Soledad Shiu, Anne |
author |
García Puente, Luis David |
author_facet |
García Puente, Luis David Gross, Elizabeth Harrington, Heather A. Johnston, Matthew Meshkat, Nicolette Pérez Millán, Mercedes Soledad Shiu, Anne |
author_role |
author |
author2 |
Gross, Elizabeth Harrington, Heather A. Johnston, Matthew Meshkat, Nicolette Pérez Millán, Mercedes Soledad Shiu, Anne |
author2_role |
author author author author author author |
dc.subject.none.fl_str_mv |
ABSOLUTE CONCENTRATION ROBUSTNESS CHEMICAL REACTION NETWORK THEORY COMPUTATIONAL ALGEBRAIC GEOMETRY NUMERICAL ALGEBRAIC GEOMETRY MASS ACTION SYSTEMS |
topic |
ABSOLUTE CONCENTRATION ROBUSTNESS CHEMICAL REACTION NETWORK THEORY COMPUTATIONAL ALGEBRAIC GEOMETRY NUMERICAL ALGEBRAIC GEOMETRY MASS ACTION SYSTEMS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Motivated by the question of how biological systems maintain homeostasis in changing environments, Shinar and Feinberg introduced in 2010 the concept of absolute concentration robustness (ACR). A biochemical system exhibits ACR in some species if the steady-state value of that species does not depend on initial conditions. Thus, a system with ACR can maintain a constant level of one species even as the initial condition changes. Despite a great deal of interest in ACR in recent years, the following basic question remains open: How can we determine quickly whether a given biochemical system has ACR? Although various approaches to this problem have been proposed, we show that they are incomplete. Accordingly, we present new methods for deciding ACR, which harness computational algebra. We illustrate our results on several biochemical signaling networks. Fil: García Puente, Luis David. Colorado College; Estados Unidos Fil: Gross, Elizabeth. University of Hawaii at Manoa; Estados Unidos Fil: Harrington, Heather A.. University of Oxford; Reino Unido. Technische Universität Dresden; Alemania Fil: Johnston, Matthew. Lawrence Technological University; Estados Unidos Fil: Meshkat, Nicolette. Santa Clara University; Estados Unidos Fil: Pérez Millán, Mercedes Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Shiu, Anne. Texas A&M University; Estados Unidos |
description |
Motivated by the question of how biological systems maintain homeostasis in changing environments, Shinar and Feinberg introduced in 2010 the concept of absolute concentration robustness (ACR). A biochemical system exhibits ACR in some species if the steady-state value of that species does not depend on initial conditions. Thus, a system with ACR can maintain a constant level of one species even as the initial condition changes. Despite a great deal of interest in ACR in recent years, the following basic question remains open: How can we determine quickly whether a given biochemical system has ACR? Although various approaches to this problem have been proposed, we show that they are incomplete. Accordingly, we present new methods for deciding ACR, which harness computational algebra. We illustrate our results on several biochemical signaling networks. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/265645 García Puente, Luis David; Gross, Elizabeth; Harrington, Heather A.; Johnston, Matthew; Meshkat, Nicolette; et al.; Absolute concentration robustness: Algebra and geometry; Academic Press Ltd - Elsevier Science Ltd; Journal Of Symbolic Computation; 128; 5-2025; 1-37 0747-7171 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/265645 |
identifier_str_mv |
García Puente, Luis David; Gross, Elizabeth; Harrington, Heather A.; Johnston, Matthew; Meshkat, Nicolette; et al.; Absolute concentration robustness: Algebra and geometry; Academic Press Ltd - Elsevier Science Ltd; Journal Of Symbolic Computation; 128; 5-2025; 1-37 0747-7171 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://linkinghub.elsevier.com/retrieve/pii/S0747717124001020 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jsc.2024.102398 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Ltd - Elsevier Science Ltd |
publisher.none.fl_str_mv |
Academic Press Ltd - Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613846927409152 |
score |
13.070432 |