The Geometry of Locally Symmetric Affine Surfaces
- Autores
- D'ascanio, Daniela; Gilkey, P.; Pisani, P.
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We examine the local geometry of affine surfaces which are locally symmetric. There are six non-isomorphic local geometries. We realize these examples as type A, type B, and type C geometries using a result of Opozda and classify the relevant geometries up to linear isomorphism. We examine the geodesic structures in this context. Particular attention is paid to the Lorentzian analogue of the hyperbolic plane and to the pseudosphere.
Fil: D'ascanio, Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Gilkey, P.. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina
Fil: Pisani, P.. Mathematics Department, University Of Oregon; Estados Unidos - Materia
-
AFFINE
GEOMETRY
GEODESICS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/87541
Ver los metadatos del registro completo
id |
CONICETDig_7057b3356de5fcae41875f2d71389ae3 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/87541 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The Geometry of Locally Symmetric Affine SurfacesD'ascanio, DanielaGilkey, P.Pisani, P.AFFINEGEOMETRYGEODESICShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We examine the local geometry of affine surfaces which are locally symmetric. There are six non-isomorphic local geometries. We realize these examples as type A, type B, and type C geometries using a result of Opozda and classify the relevant geometries up to linear isomorphism. We examine the geodesic structures in this context. Particular attention is paid to the Lorentzian analogue of the hyperbolic plane and to the pseudosphere.Fil: D'ascanio, Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Gilkey, P.. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; ArgentinaFil: Pisani, P.. Mathematics Department, University Of Oregon; Estados UnidosSpringer2018-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/87541D'ascanio, Daniela; Gilkey, P.; Pisani, P.; The Geometry of Locally Symmetric Affine Surfaces; Springer; Vietnam Journal of Mathematics; 47; 1; 3-2018; 5-212305-221XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10013-018-0280-4info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s10013-018-0280-4info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:50:39Zoai:ri.conicet.gov.ar:11336/87541instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:50:39.599CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The Geometry of Locally Symmetric Affine Surfaces |
title |
The Geometry of Locally Symmetric Affine Surfaces |
spellingShingle |
The Geometry of Locally Symmetric Affine Surfaces D'ascanio, Daniela AFFINE GEOMETRY GEODESICS |
title_short |
The Geometry of Locally Symmetric Affine Surfaces |
title_full |
The Geometry of Locally Symmetric Affine Surfaces |
title_fullStr |
The Geometry of Locally Symmetric Affine Surfaces |
title_full_unstemmed |
The Geometry of Locally Symmetric Affine Surfaces |
title_sort |
The Geometry of Locally Symmetric Affine Surfaces |
dc.creator.none.fl_str_mv |
D'ascanio, Daniela Gilkey, P. Pisani, P. |
author |
D'ascanio, Daniela |
author_facet |
D'ascanio, Daniela Gilkey, P. Pisani, P. |
author_role |
author |
author2 |
Gilkey, P. Pisani, P. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
AFFINE GEOMETRY GEODESICS |
topic |
AFFINE GEOMETRY GEODESICS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We examine the local geometry of affine surfaces which are locally symmetric. There are six non-isomorphic local geometries. We realize these examples as type A, type B, and type C geometries using a result of Opozda and classify the relevant geometries up to linear isomorphism. We examine the geodesic structures in this context. Particular attention is paid to the Lorentzian analogue of the hyperbolic plane and to the pseudosphere. Fil: D'ascanio, Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina Fil: Gilkey, P.. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina Fil: Pisani, P.. Mathematics Department, University Of Oregon; Estados Unidos |
description |
We examine the local geometry of affine surfaces which are locally symmetric. There are six non-isomorphic local geometries. We realize these examples as type A, type B, and type C geometries using a result of Opozda and classify the relevant geometries up to linear isomorphism. We examine the geodesic structures in this context. Particular attention is paid to the Lorentzian analogue of the hyperbolic plane and to the pseudosphere. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/87541 D'ascanio, Daniela; Gilkey, P.; Pisani, P.; The Geometry of Locally Symmetric Affine Surfaces; Springer; Vietnam Journal of Mathematics; 47; 1; 3-2018; 5-21 2305-221X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/87541 |
identifier_str_mv |
D'ascanio, Daniela; Gilkey, P.; Pisani, P.; The Geometry of Locally Symmetric Affine Surfaces; Springer; Vietnam Journal of Mathematics; 47; 1; 3-2018; 5-21 2305-221X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10013-018-0280-4 info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s10013-018-0280-4 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269044836663296 |
score |
13.13397 |