The Geometry of Locally Symmetric Affine Surfaces

Autores
D'ascanio, Daniela; Gilkey, P.; Pisani, P.
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We examine the local geometry of affine surfaces which are locally symmetric. There are six non-isomorphic local geometries. We realize these examples as type A, type B, and type C geometries using a result of Opozda and classify the relevant geometries up to linear isomorphism. We examine the geodesic structures in this context. Particular attention is paid to the Lorentzian analogue of the hyperbolic plane and to the pseudosphere.
Fil: D'ascanio, Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Gilkey, P.. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina
Fil: Pisani, P.. Mathematics Department, University Of Oregon; Estados Unidos
Materia
AFFINE
GEOMETRY
GEODESICS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/87541

id CONICETDig_7057b3356de5fcae41875f2d71389ae3
oai_identifier_str oai:ri.conicet.gov.ar:11336/87541
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The Geometry of Locally Symmetric Affine SurfacesD'ascanio, DanielaGilkey, P.Pisani, P.AFFINEGEOMETRYGEODESICShttps://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1We examine the local geometry of affine surfaces which are locally symmetric. There are six non-isomorphic local geometries. We realize these examples as type A, type B, and type C geometries using a result of Opozda and classify the relevant geometries up to linear isomorphism. We examine the geodesic structures in this context. Particular attention is paid to the Lorentzian analogue of the hyperbolic plane and to the pseudosphere.Fil: D'ascanio, Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Gilkey, P.. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; ArgentinaFil: Pisani, P.. Mathematics Department, University Of Oregon; Estados UnidosSpringer2018-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/87541D'ascanio, Daniela; Gilkey, P.; Pisani, P.; The Geometry of Locally Symmetric Affine Surfaces; Springer; Vietnam Journal of Mathematics; 47; 1; 3-2018; 5-212305-221XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10013-018-0280-4info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s10013-018-0280-4info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:50:39Zoai:ri.conicet.gov.ar:11336/87541instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:50:39.599CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The Geometry of Locally Symmetric Affine Surfaces
title The Geometry of Locally Symmetric Affine Surfaces
spellingShingle The Geometry of Locally Symmetric Affine Surfaces
D'ascanio, Daniela
AFFINE
GEOMETRY
GEODESICS
title_short The Geometry of Locally Symmetric Affine Surfaces
title_full The Geometry of Locally Symmetric Affine Surfaces
title_fullStr The Geometry of Locally Symmetric Affine Surfaces
title_full_unstemmed The Geometry of Locally Symmetric Affine Surfaces
title_sort The Geometry of Locally Symmetric Affine Surfaces
dc.creator.none.fl_str_mv D'ascanio, Daniela
Gilkey, P.
Pisani, P.
author D'ascanio, Daniela
author_facet D'ascanio, Daniela
Gilkey, P.
Pisani, P.
author_role author
author2 Gilkey, P.
Pisani, P.
author2_role author
author
dc.subject.none.fl_str_mv AFFINE
GEOMETRY
GEODESICS
topic AFFINE
GEOMETRY
GEODESICS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.3
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We examine the local geometry of affine surfaces which are locally symmetric. There are six non-isomorphic local geometries. We realize these examples as type A, type B, and type C geometries using a result of Opozda and classify the relevant geometries up to linear isomorphism. We examine the geodesic structures in this context. Particular attention is paid to the Lorentzian analogue of the hyperbolic plane and to the pseudosphere.
Fil: D'ascanio, Daniela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Gilkey, P.. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Departamento de Física; Argentina
Fil: Pisani, P.. Mathematics Department, University Of Oregon; Estados Unidos
description We examine the local geometry of affine surfaces which are locally symmetric. There are six non-isomorphic local geometries. We realize these examples as type A, type B, and type C geometries using a result of Opozda and classify the relevant geometries up to linear isomorphism. We examine the geodesic structures in this context. Particular attention is paid to the Lorentzian analogue of the hyperbolic plane and to the pseudosphere.
publishDate 2018
dc.date.none.fl_str_mv 2018-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/87541
D'ascanio, Daniela; Gilkey, P.; Pisani, P.; The Geometry of Locally Symmetric Affine Surfaces; Springer; Vietnam Journal of Mathematics; 47; 1; 3-2018; 5-21
2305-221X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/87541
identifier_str_mv D'ascanio, Daniela; Gilkey, P.; Pisani, P.; The Geometry of Locally Symmetric Affine Surfaces; Springer; Vietnam Journal of Mathematics; 47; 1; 3-2018; 5-21
2305-221X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1007/s10013-018-0280-4
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/10.1007/s10013-018-0280-4
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269044836663296
score 13.13397