On the geometric degree of the tangent bundle of a smooth algebraic variety
- Autores
- Jeronimo, Gabriela Tali; Lanciano, Leonardo; Solernó, Pablo Luis
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present bounds for the geometric degree of the tangent bundle and the tangential variety of a smooth affine algebraic variety V in terms of the geometric degree of V. We first analyze the case of curves, showing an explicit relation between these degrees. In addition, for parametric curves, we obtain upper bounds that are linear in the degree of the given curve. In the case of varieties of arbitrary dimension, we prove general upper bounds for the degrees of the tangent bundle and the tangential variety of V that are exponential in the dimension or co-dimension of V, and a quadratic upper bound that holds for varieties defined by generic polynomials. Finally, we characterize the smooth irreducible varieties with a tangent bundle of minimal degree.
Fil: Jeronimo, Gabriela Tali. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Departamento de Ciencias Exactas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Lanciano, Leonardo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Solernó, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina - Materia
-
GEOMETRIC DEGREE
TANGENT BUNDLE
AFFINE VARIETY
ALGEBRAIC GEOMETRY - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/265407
Ver los metadatos del registro completo
id |
CONICETDig_0cdd6f5bd411f53722a2904e6745a49f |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/265407 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On the geometric degree of the tangent bundle of a smooth algebraic varietySobre el grado geométrico del fibrado tangente de una variedad algebraica suaveJeronimo, Gabriela TaliLanciano, LeonardoSolernó, Pablo LuisGEOMETRIC DEGREETANGENT BUNDLEAFFINE VARIETYALGEBRAIC GEOMETRYhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We present bounds for the geometric degree of the tangent bundle and the tangential variety of a smooth affine algebraic variety V in terms of the geometric degree of V. We first analyze the case of curves, showing an explicit relation between these degrees. In addition, for parametric curves, we obtain upper bounds that are linear in the degree of the given curve. In the case of varieties of arbitrary dimension, we prove general upper bounds for the degrees of the tangent bundle and the tangential variety of V that are exponential in the dimension or co-dimension of V, and a quadratic upper bound that holds for varieties defined by generic polynomials. Finally, we characterize the smooth irreducible varieties with a tangent bundle of minimal degree.Fil: Jeronimo, Gabriela Tali. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Departamento de Ciencias Exactas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Lanciano, Leonardo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Solernó, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaUniversidad de Barcelona2025-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/265407Jeronimo, Gabriela Tali; Lanciano, Leonardo; Solernó, Pablo Luis; On the geometric degree of the tangent bundle of a smooth algebraic variety; Universidad de Barcelona; Collectanea Mathematica; 2025; 4-2025; 1-260010-0757CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s13348-025-00474-yinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s13348-025-00474-yinfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2403.10661info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:45Zoai:ri.conicet.gov.ar:11336/265407instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:45.643CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On the geometric degree of the tangent bundle of a smooth algebraic variety Sobre el grado geométrico del fibrado tangente de una variedad algebraica suave |
title |
On the geometric degree of the tangent bundle of a smooth algebraic variety |
spellingShingle |
On the geometric degree of the tangent bundle of a smooth algebraic variety Jeronimo, Gabriela Tali GEOMETRIC DEGREE TANGENT BUNDLE AFFINE VARIETY ALGEBRAIC GEOMETRY |
title_short |
On the geometric degree of the tangent bundle of a smooth algebraic variety |
title_full |
On the geometric degree of the tangent bundle of a smooth algebraic variety |
title_fullStr |
On the geometric degree of the tangent bundle of a smooth algebraic variety |
title_full_unstemmed |
On the geometric degree of the tangent bundle of a smooth algebraic variety |
title_sort |
On the geometric degree of the tangent bundle of a smooth algebraic variety |
dc.creator.none.fl_str_mv |
Jeronimo, Gabriela Tali Lanciano, Leonardo Solernó, Pablo Luis |
author |
Jeronimo, Gabriela Tali |
author_facet |
Jeronimo, Gabriela Tali Lanciano, Leonardo Solernó, Pablo Luis |
author_role |
author |
author2 |
Lanciano, Leonardo Solernó, Pablo Luis |
author2_role |
author author |
dc.subject.none.fl_str_mv |
GEOMETRIC DEGREE TANGENT BUNDLE AFFINE VARIETY ALGEBRAIC GEOMETRY |
topic |
GEOMETRIC DEGREE TANGENT BUNDLE AFFINE VARIETY ALGEBRAIC GEOMETRY |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present bounds for the geometric degree of the tangent bundle and the tangential variety of a smooth affine algebraic variety V in terms of the geometric degree of V. We first analyze the case of curves, showing an explicit relation between these degrees. In addition, for parametric curves, we obtain upper bounds that are linear in the degree of the given curve. In the case of varieties of arbitrary dimension, we prove general upper bounds for the degrees of the tangent bundle and the tangential variety of V that are exponential in the dimension or co-dimension of V, and a quadratic upper bound that holds for varieties defined by generic polynomials. Finally, we characterize the smooth irreducible varieties with a tangent bundle of minimal degree. Fil: Jeronimo, Gabriela Tali. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Departamento de Ciencias Exactas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Lanciano, Leonardo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Solernó, Pablo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina |
description |
We present bounds for the geometric degree of the tangent bundle and the tangential variety of a smooth affine algebraic variety V in terms of the geometric degree of V. We first analyze the case of curves, showing an explicit relation between these degrees. In addition, for parametric curves, we obtain upper bounds that are linear in the degree of the given curve. In the case of varieties of arbitrary dimension, we prove general upper bounds for the degrees of the tangent bundle and the tangential variety of V that are exponential in the dimension or co-dimension of V, and a quadratic upper bound that holds for varieties defined by generic polynomials. Finally, we characterize the smooth irreducible varieties with a tangent bundle of minimal degree. |
publishDate |
2025 |
dc.date.none.fl_str_mv |
2025-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/265407 Jeronimo, Gabriela Tali; Lanciano, Leonardo; Solernó, Pablo Luis; On the geometric degree of the tangent bundle of a smooth algebraic variety; Universidad de Barcelona; Collectanea Mathematica; 2025; 4-2025; 1-26 0010-0757 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/265407 |
identifier_str_mv |
Jeronimo, Gabriela Tali; Lanciano, Leonardo; Solernó, Pablo Luis; On the geometric degree of the tangent bundle of a smooth algebraic variety; Universidad de Barcelona; Collectanea Mathematica; 2025; 4-2025; 1-26 0010-0757 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s13348-025-00474-y info:eu-repo/semantics/altIdentifier/doi/10.1007/s13348-025-00474-y info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/2403.10661 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidad de Barcelona |
publisher.none.fl_str_mv |
Universidad de Barcelona |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269422155202560 |
score |
13.13397 |