Cones and Cartan geometry
- Autores
- Di Scala, Antonio Jose'; Olmos, Carlos Enrique; Vittone, Francisco
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We show that the extended principal bundle of a Cartan geometry of type (A(m,R),GL(m,R)), endowed with its extended connection ωˆ, is isomorphic to the principal A(m,R)-bundle of affine frames endowed with the affine connection as defined in classical Kobayashi-Nomizu volume I. Then we classify the local holonomy groups of the Cartan geometry canonically associated to a Riemannian manifold. It follows that if the holonomy group of the Cartan geometry canonically associated to a Riemannian manifold is compact then the Riemannian manifold is locally a product of cones.
Fil: Di Scala, Antonio Jose'. Politecnico di Torino; Italia
Fil: Olmos, Carlos Enrique. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Matemática. Grupo de Geometria Diferencial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Vittone, Francisco. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina - Materia
-
CARTAN GEOMETRY
AFFINE CONNECTION
CONES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/153301
Ver los metadatos del registro completo
id |
CONICETDig_f56f89d1e6585051b6ec607123747c5e |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/153301 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Cones and Cartan geometryDi Scala, Antonio Jose'Olmos, Carlos EnriqueVittone, FranciscoCARTAN GEOMETRYAFFINE CONNECTIONCONEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We show that the extended principal bundle of a Cartan geometry of type (A(m,R),GL(m,R)), endowed with its extended connection ωˆ, is isomorphic to the principal A(m,R)-bundle of affine frames endowed with the affine connection as defined in classical Kobayashi-Nomizu volume I. Then we classify the local holonomy groups of the Cartan geometry canonically associated to a Riemannian manifold. It follows that if the holonomy group of the Cartan geometry canonically associated to a Riemannian manifold is compact then the Riemannian manifold is locally a product of cones.Fil: Di Scala, Antonio Jose'. Politecnico di Torino; ItaliaFil: Olmos, Carlos Enrique. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Matemática. Grupo de Geometria Diferencial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Vittone, Francisco. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaElsevier Science2021-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/153301Di Scala, Antonio Jose'; Olmos, Carlos Enrique; Vittone, Francisco; Cones and Cartan geometry; Elsevier Science; Differential Geometry and its Applications; 78; 10-2021; 1-140926-22451872-6984CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0926224521000772info:eu-repo/semantics/altIdentifier/doi/10.1016/j.difgeo.2021.101793info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1911.09031info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:47:36Zoai:ri.conicet.gov.ar:11336/153301instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:47:36.745CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Cones and Cartan geometry |
title |
Cones and Cartan geometry |
spellingShingle |
Cones and Cartan geometry Di Scala, Antonio Jose' CARTAN GEOMETRY AFFINE CONNECTION CONES |
title_short |
Cones and Cartan geometry |
title_full |
Cones and Cartan geometry |
title_fullStr |
Cones and Cartan geometry |
title_full_unstemmed |
Cones and Cartan geometry |
title_sort |
Cones and Cartan geometry |
dc.creator.none.fl_str_mv |
Di Scala, Antonio Jose' Olmos, Carlos Enrique Vittone, Francisco |
author |
Di Scala, Antonio Jose' |
author_facet |
Di Scala, Antonio Jose' Olmos, Carlos Enrique Vittone, Francisco |
author_role |
author |
author2 |
Olmos, Carlos Enrique Vittone, Francisco |
author2_role |
author author |
dc.subject.none.fl_str_mv |
CARTAN GEOMETRY AFFINE CONNECTION CONES |
topic |
CARTAN GEOMETRY AFFINE CONNECTION CONES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We show that the extended principal bundle of a Cartan geometry of type (A(m,R),GL(m,R)), endowed with its extended connection ωˆ, is isomorphic to the principal A(m,R)-bundle of affine frames endowed with the affine connection as defined in classical Kobayashi-Nomizu volume I. Then we classify the local holonomy groups of the Cartan geometry canonically associated to a Riemannian manifold. It follows that if the holonomy group of the Cartan geometry canonically associated to a Riemannian manifold is compact then the Riemannian manifold is locally a product of cones. Fil: Di Scala, Antonio Jose'. Politecnico di Torino; Italia Fil: Olmos, Carlos Enrique. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomia y Física. Sección Matemática. Grupo de Geometria Diferencial; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Vittone, Francisco. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina |
description |
We show that the extended principal bundle of a Cartan geometry of type (A(m,R),GL(m,R)), endowed with its extended connection ωˆ, is isomorphic to the principal A(m,R)-bundle of affine frames endowed with the affine connection as defined in classical Kobayashi-Nomizu volume I. Then we classify the local holonomy groups of the Cartan geometry canonically associated to a Riemannian manifold. It follows that if the holonomy group of the Cartan geometry canonically associated to a Riemannian manifold is compact then the Riemannian manifold is locally a product of cones. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/153301 Di Scala, Antonio Jose'; Olmos, Carlos Enrique; Vittone, Francisco; Cones and Cartan geometry; Elsevier Science; Differential Geometry and its Applications; 78; 10-2021; 1-14 0926-2245 1872-6984 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/153301 |
identifier_str_mv |
Di Scala, Antonio Jose'; Olmos, Carlos Enrique; Vittone, Francisco; Cones and Cartan geometry; Elsevier Science; Differential Geometry and its Applications; 78; 10-2021; 1-14 0926-2245 1872-6984 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/abs/pii/S0926224521000772 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.difgeo.2021.101793 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1911.09031 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268870862176256 |
score |
13.13397 |