Algebraic geometry tools in systems biology
- Autores
- Dickenstein, Alicia Marcela
- Año de publicación
- 2020
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Many models in the sciences and engineering are expressed as solution sets to systems of polynomial equations, that is, as affine algebraic varieties. This is a basic notion in algebraic geometry, a vibrant area of mathematics which is particularly good at counting (solutions, tangencies, obstructions, etc.), giving structure to interesting sets (varieties with special properties, moduli spaces, etc.) and, principally, understanding structure. Starting in the 1980s with the development of computer algebra systems, and increasingly over the last years, ideas and methods from algebraic geometry are being applied to a great number of new areas (both in mathematics and in other disciplines including biology, computer science, physics, chemistry, etc.).
Fil: Dickenstein, Alicia Marcela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
Algebraic Geometry
Systems Biology
Enzymatic networks
Multistationarity - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/210227
Ver los metadatos del registro completo
id |
CONICETDig_61d8e490112dceea3c7e8d78a731856c |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/210227 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Algebraic geometry tools in systems biologyDickenstein, Alicia MarcelaAlgebraic GeometrySystems BiologyEnzymatic networksMultistationarityhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Many models in the sciences and engineering are expressed as solution sets to systems of polynomial equations, that is, as affine algebraic varieties. This is a basic notion in algebraic geometry, a vibrant area of mathematics which is particularly good at counting (solutions, tangencies, obstructions, etc.), giving structure to interesting sets (varieties with special properties, moduli spaces, etc.) and, principally, understanding structure. Starting in the 1980s with the development of computer algebra systems, and increasingly over the last years, ideas and methods from algebraic geometry are being applied to a great number of new areas (both in mathematics and in other disciplines including biology, computer science, physics, chemistry, etc.).Fil: Dickenstein, Alicia Marcela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaAmerican Mathematical Society2020-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/210227Dickenstein, Alicia Marcela; Algebraic geometry tools in systems biology; American Mathematical Society; Notices of the American Mathematical Society; 67; 11; 12-2020; 1706-17150002-99201088-9477CONICET DigitalCONICETenghttps://ri.conicet.gov.ar/handle/11336/38111info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/notices/202011/rnoti-p1706.pdfinfo:eu-repo/semantics/altIdentifier/doi/10.1090/noti2188info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:52:49Zoai:ri.conicet.gov.ar:11336/210227instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:52:49.643CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Algebraic geometry tools in systems biology |
title |
Algebraic geometry tools in systems biology |
spellingShingle |
Algebraic geometry tools in systems biology Dickenstein, Alicia Marcela Algebraic Geometry Systems Biology Enzymatic networks Multistationarity |
title_short |
Algebraic geometry tools in systems biology |
title_full |
Algebraic geometry tools in systems biology |
title_fullStr |
Algebraic geometry tools in systems biology |
title_full_unstemmed |
Algebraic geometry tools in systems biology |
title_sort |
Algebraic geometry tools in systems biology |
dc.creator.none.fl_str_mv |
Dickenstein, Alicia Marcela |
author |
Dickenstein, Alicia Marcela |
author_facet |
Dickenstein, Alicia Marcela |
author_role |
author |
dc.subject.none.fl_str_mv |
Algebraic Geometry Systems Biology Enzymatic networks Multistationarity |
topic |
Algebraic Geometry Systems Biology Enzymatic networks Multistationarity |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Many models in the sciences and engineering are expressed as solution sets to systems of polynomial equations, that is, as affine algebraic varieties. This is a basic notion in algebraic geometry, a vibrant area of mathematics which is particularly good at counting (solutions, tangencies, obstructions, etc.), giving structure to interesting sets (varieties with special properties, moduli spaces, etc.) and, principally, understanding structure. Starting in the 1980s with the development of computer algebra systems, and increasingly over the last years, ideas and methods from algebraic geometry are being applied to a great number of new areas (both in mathematics and in other disciplines including biology, computer science, physics, chemistry, etc.). Fil: Dickenstein, Alicia Marcela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
Many models in the sciences and engineering are expressed as solution sets to systems of polynomial equations, that is, as affine algebraic varieties. This is a basic notion in algebraic geometry, a vibrant area of mathematics which is particularly good at counting (solutions, tangencies, obstructions, etc.), giving structure to interesting sets (varieties with special properties, moduli spaces, etc.) and, principally, understanding structure. Starting in the 1980s with the development of computer algebra systems, and increasingly over the last years, ideas and methods from algebraic geometry are being applied to a great number of new areas (both in mathematics and in other disciplines including biology, computer science, physics, chemistry, etc.). |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/210227 Dickenstein, Alicia Marcela; Algebraic geometry tools in systems biology; American Mathematical Society; Notices of the American Mathematical Society; 67; 11; 12-2020; 1706-1715 0002-9920 1088-9477 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/210227 |
identifier_str_mv |
Dickenstein, Alicia Marcela; Algebraic geometry tools in systems biology; American Mathematical Society; Notices of the American Mathematical Society; 67; 11; 12-2020; 1706-1715 0002-9920 1088-9477 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://ri.conicet.gov.ar/handle/11336/38111 info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/notices/202011/rnoti-p1706.pdf info:eu-repo/semantics/altIdentifier/doi/10.1090/noti2188 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
American Mathematical Society |
publisher.none.fl_str_mv |
American Mathematical Society |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269184537395200 |
score |
13.13397 |