Algebraic geometry tools in systems biology

Autores
Dickenstein, Alicia Marcela
Año de publicación
2020
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Many models in the sciences and engineering are expressed as solution sets to systems of polynomial equations, that is, as affine algebraic varieties. This is a basic notion in algebraic geometry, a vibrant area of mathematics which is particularly good at counting (solutions, tangencies, obstructions, etc.), giving structure to interesting sets (varieties with special properties, moduli spaces, etc.) and, principally, understanding structure. Starting in the 1980s with the development of computer algebra systems, and increasingly over the last years, ideas and methods from algebraic geometry are being applied to a great number of new areas (both in mathematics and in other disciplines including biology, computer science, physics, chemistry, etc.).
Fil: Dickenstein, Alicia Marcela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
Algebraic Geometry
Systems Biology
Enzymatic networks
Multistationarity
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/210227

id CONICETDig_61d8e490112dceea3c7e8d78a731856c
oai_identifier_str oai:ri.conicet.gov.ar:11336/210227
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Algebraic geometry tools in systems biologyDickenstein, Alicia MarcelaAlgebraic GeometrySystems BiologyEnzymatic networksMultistationarityhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Many models in the sciences and engineering are expressed as solution sets to systems of polynomial equations, that is, as affine algebraic varieties. This is a basic notion in algebraic geometry, a vibrant area of mathematics which is particularly good at counting (solutions, tangencies, obstructions, etc.), giving structure to interesting sets (varieties with special properties, moduli spaces, etc.) and, principally, understanding structure. Starting in the 1980s with the development of computer algebra systems, and increasingly over the last years, ideas and methods from algebraic geometry are being applied to a great number of new areas (both in mathematics and in other disciplines including biology, computer science, physics, chemistry, etc.).Fil: Dickenstein, Alicia Marcela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaAmerican Mathematical Society2020-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/210227Dickenstein, Alicia Marcela; Algebraic geometry tools in systems biology; American Mathematical Society; Notices of the American Mathematical Society; 67; 11; 12-2020; 1706-17150002-99201088-9477CONICET DigitalCONICETenghttps://ri.conicet.gov.ar/handle/11336/38111info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/notices/202011/rnoti-p1706.pdfinfo:eu-repo/semantics/altIdentifier/doi/10.1090/noti2188info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:52:49Zoai:ri.conicet.gov.ar:11336/210227instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:52:49.643CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Algebraic geometry tools in systems biology
title Algebraic geometry tools in systems biology
spellingShingle Algebraic geometry tools in systems biology
Dickenstein, Alicia Marcela
Algebraic Geometry
Systems Biology
Enzymatic networks
Multistationarity
title_short Algebraic geometry tools in systems biology
title_full Algebraic geometry tools in systems biology
title_fullStr Algebraic geometry tools in systems biology
title_full_unstemmed Algebraic geometry tools in systems biology
title_sort Algebraic geometry tools in systems biology
dc.creator.none.fl_str_mv Dickenstein, Alicia Marcela
author Dickenstein, Alicia Marcela
author_facet Dickenstein, Alicia Marcela
author_role author
dc.subject.none.fl_str_mv Algebraic Geometry
Systems Biology
Enzymatic networks
Multistationarity
topic Algebraic Geometry
Systems Biology
Enzymatic networks
Multistationarity
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Many models in the sciences and engineering are expressed as solution sets to systems of polynomial equations, that is, as affine algebraic varieties. This is a basic notion in algebraic geometry, a vibrant area of mathematics which is particularly good at counting (solutions, tangencies, obstructions, etc.), giving structure to interesting sets (varieties with special properties, moduli spaces, etc.) and, principally, understanding structure. Starting in the 1980s with the development of computer algebra systems, and increasingly over the last years, ideas and methods from algebraic geometry are being applied to a great number of new areas (both in mathematics and in other disciplines including biology, computer science, physics, chemistry, etc.).
Fil: Dickenstein, Alicia Marcela. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description Many models in the sciences and engineering are expressed as solution sets to systems of polynomial equations, that is, as affine algebraic varieties. This is a basic notion in algebraic geometry, a vibrant area of mathematics which is particularly good at counting (solutions, tangencies, obstructions, etc.), giving structure to interesting sets (varieties with special properties, moduli spaces, etc.) and, principally, understanding structure. Starting in the 1980s with the development of computer algebra systems, and increasingly over the last years, ideas and methods from algebraic geometry are being applied to a great number of new areas (both in mathematics and in other disciplines including biology, computer science, physics, chemistry, etc.).
publishDate 2020
dc.date.none.fl_str_mv 2020-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/210227
Dickenstein, Alicia Marcela; Algebraic geometry tools in systems biology; American Mathematical Society; Notices of the American Mathematical Society; 67; 11; 12-2020; 1706-1715
0002-9920
1088-9477
CONICET Digital
CONICET
url http://hdl.handle.net/11336/210227
identifier_str_mv Dickenstein, Alicia Marcela; Algebraic geometry tools in systems biology; American Mathematical Society; Notices of the American Mathematical Society; 67; 11; 12-2020; 1706-1715
0002-9920
1088-9477
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://ri.conicet.gov.ar/handle/11336/38111
info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/notices/202011/rnoti-p1706.pdf
info:eu-repo/semantics/altIdentifier/doi/10.1090/noti2188
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Mathematical Society
publisher.none.fl_str_mv American Mathematical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269184537395200
score 13.13397