Modes of Adjointness

Autores
Menni, Matías; Smith, Clara
Año de publicación
2014
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The fact that many modal operators are part of an adjunction is probably folklore since the discovery of adjunctions. On the other hand, the natural idea of a minimal propositional calculus extended with a pair of adjoint operators seems to have been formulated only very recently. This recent research, mainly motivated by applications in computer science, concentrates on technical issues related to the calculi and not on the significance of adjunctions in modal logic. It then seems a worthy enterprise (both for these contemporary topical pursuits and also for historical interest) to trace the concept of adjunction back to the origins of the algebraic semantics of modal logic and to make explicit its ubiquity in this branch of mathematics.
Fil: Menni, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Informática. Laboratorio de Investigación y Formación en Informática Avanzada; Argentina
Fil: Smith, Clara. Universidad Nacional de La Plata. Facultad de Ciencias Jurídicas y Sociales; Argentina. Universidad Católica de La Plata; Argentina
Materia
Adjoint Functors
Modal Logic
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/76821

id CONICETDig_5b4b1dd28fb5ba2130acef84e6c8bbc9
oai_identifier_str oai:ri.conicet.gov.ar:11336/76821
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Modes of AdjointnessMenni, MatíasSmith, ClaraAdjoint FunctorsModal Logichttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The fact that many modal operators are part of an adjunction is probably folklore since the discovery of adjunctions. On the other hand, the natural idea of a minimal propositional calculus extended with a pair of adjoint operators seems to have been formulated only very recently. This recent research, mainly motivated by applications in computer science, concentrates on technical issues related to the calculi and not on the significance of adjunctions in modal logic. It then seems a worthy enterprise (both for these contemporary topical pursuits and also for historical interest) to trace the concept of adjunction back to the origins of the algebraic semantics of modal logic and to make explicit its ubiquity in this branch of mathematics.Fil: Menni, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Informática. Laboratorio de Investigación y Formación en Informática Avanzada; ArgentinaFil: Smith, Clara. Universidad Nacional de La Plata. Facultad de Ciencias Jurídicas y Sociales; Argentina. Universidad Católica de La Plata; ArgentinaKluwer Academic Publishers2014-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/76821Menni, Matías; Smith, Clara; Modes of Adjointness; Kluwer Academic Publishers; Journal of Philosophical Logic; 43; 2-3; 6-2014; 365-3910022-36111573-0433CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs10992-012-9266-yinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10992-012-9266-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:45:18Zoai:ri.conicet.gov.ar:11336/76821instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:45:18.718CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Modes of Adjointness
title Modes of Adjointness
spellingShingle Modes of Adjointness
Menni, Matías
Adjoint Functors
Modal Logic
title_short Modes of Adjointness
title_full Modes of Adjointness
title_fullStr Modes of Adjointness
title_full_unstemmed Modes of Adjointness
title_sort Modes of Adjointness
dc.creator.none.fl_str_mv Menni, Matías
Smith, Clara
author Menni, Matías
author_facet Menni, Matías
Smith, Clara
author_role author
author2 Smith, Clara
author2_role author
dc.subject.none.fl_str_mv Adjoint Functors
Modal Logic
topic Adjoint Functors
Modal Logic
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The fact that many modal operators are part of an adjunction is probably folklore since the discovery of adjunctions. On the other hand, the natural idea of a minimal propositional calculus extended with a pair of adjoint operators seems to have been formulated only very recently. This recent research, mainly motivated by applications in computer science, concentrates on technical issues related to the calculi and not on the significance of adjunctions in modal logic. It then seems a worthy enterprise (both for these contemporary topical pursuits and also for historical interest) to trace the concept of adjunction back to the origins of the algebraic semantics of modal logic and to make explicit its ubiquity in this branch of mathematics.
Fil: Menni, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Informática. Laboratorio de Investigación y Formación en Informática Avanzada; Argentina
Fil: Smith, Clara. Universidad Nacional de La Plata. Facultad de Ciencias Jurídicas y Sociales; Argentina. Universidad Católica de La Plata; Argentina
description The fact that many modal operators are part of an adjunction is probably folklore since the discovery of adjunctions. On the other hand, the natural idea of a minimal propositional calculus extended with a pair of adjoint operators seems to have been formulated only very recently. This recent research, mainly motivated by applications in computer science, concentrates on technical issues related to the calculi and not on the significance of adjunctions in modal logic. It then seems a worthy enterprise (both for these contemporary topical pursuits and also for historical interest) to trace the concept of adjunction back to the origins of the algebraic semantics of modal logic and to make explicit its ubiquity in this branch of mathematics.
publishDate 2014
dc.date.none.fl_str_mv 2014-06
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/76821
Menni, Matías; Smith, Clara; Modes of Adjointness; Kluwer Academic Publishers; Journal of Philosophical Logic; 43; 2-3; 6-2014; 365-391
0022-3611
1573-0433
CONICET Digital
CONICET
url http://hdl.handle.net/11336/76821
identifier_str_mv Menni, Matías; Smith, Clara; Modes of Adjointness; Kluwer Academic Publishers; Journal of Philosophical Logic; 43; 2-3; 6-2014; 365-391
0022-3611
1573-0433
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs10992-012-9266-y
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10992-012-9266-y
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Kluwer Academic Publishers
publisher.none.fl_str_mv Kluwer Academic Publishers
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613423102427136
score 13.070432