Modes of Adjointness
- Autores
- Menni, Matías; Smith, Clara
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- The fact that many modal operators are part of an adjunction is probably folklore since the discovery of adjunctions. On the other hand, the natural idea of a minimal propositional calculus extended with a pair of adjoint operators seems to have been formulated only very recently. This recent research, mainly motivated by applications in computer science, concentrates on technical issues related to the calculi and not on the significance of adjunctions in modal logic. It then seems a worthy enterprise (both for these contemporary topical pursuits and also for historical interest) to trace the concept of adjunction back to the origins of the algebraic semantics of modal logic and to make explicit its ubiquity in this branch of mathematics.
Fil: Menni, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Informática. Laboratorio de Investigación y Formación en Informática Avanzada; Argentina
Fil: Smith, Clara. Universidad Nacional de La Plata. Facultad de Ciencias Jurídicas y Sociales; Argentina. Universidad Católica de La Plata; Argentina - Materia
-
Adjoint Functors
Modal Logic - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/76821
Ver los metadatos del registro completo
id |
CONICETDig_5b4b1dd28fb5ba2130acef84e6c8bbc9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/76821 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Modes of AdjointnessMenni, MatíasSmith, ClaraAdjoint FunctorsModal Logichttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The fact that many modal operators are part of an adjunction is probably folklore since the discovery of adjunctions. On the other hand, the natural idea of a minimal propositional calculus extended with a pair of adjoint operators seems to have been formulated only very recently. This recent research, mainly motivated by applications in computer science, concentrates on technical issues related to the calculi and not on the significance of adjunctions in modal logic. It then seems a worthy enterprise (both for these contemporary topical pursuits and also for historical interest) to trace the concept of adjunction back to the origins of the algebraic semantics of modal logic and to make explicit its ubiquity in this branch of mathematics.Fil: Menni, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Informática. Laboratorio de Investigación y Formación en Informática Avanzada; ArgentinaFil: Smith, Clara. Universidad Nacional de La Plata. Facultad de Ciencias Jurídicas y Sociales; Argentina. Universidad Católica de La Plata; ArgentinaKluwer Academic Publishers2014-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/76821Menni, Matías; Smith, Clara; Modes of Adjointness; Kluwer Academic Publishers; Journal of Philosophical Logic; 43; 2-3; 6-2014; 365-3910022-36111573-0433CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs10992-012-9266-yinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10992-012-9266-yinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:45:18Zoai:ri.conicet.gov.ar:11336/76821instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:45:18.718CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Modes of Adjointness |
title |
Modes of Adjointness |
spellingShingle |
Modes of Adjointness Menni, Matías Adjoint Functors Modal Logic |
title_short |
Modes of Adjointness |
title_full |
Modes of Adjointness |
title_fullStr |
Modes of Adjointness |
title_full_unstemmed |
Modes of Adjointness |
title_sort |
Modes of Adjointness |
dc.creator.none.fl_str_mv |
Menni, Matías Smith, Clara |
author |
Menni, Matías |
author_facet |
Menni, Matías Smith, Clara |
author_role |
author |
author2 |
Smith, Clara |
author2_role |
author |
dc.subject.none.fl_str_mv |
Adjoint Functors Modal Logic |
topic |
Adjoint Functors Modal Logic |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
The fact that many modal operators are part of an adjunction is probably folklore since the discovery of adjunctions. On the other hand, the natural idea of a minimal propositional calculus extended with a pair of adjoint operators seems to have been formulated only very recently. This recent research, mainly motivated by applications in computer science, concentrates on technical issues related to the calculi and not on the significance of adjunctions in modal logic. It then seems a worthy enterprise (both for these contemporary topical pursuits and also for historical interest) to trace the concept of adjunction back to the origins of the algebraic semantics of modal logic and to make explicit its ubiquity in this branch of mathematics. Fil: Menni, Matías. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; Argentina. Universidad Nacional de La Plata. Facultad de Informática. Laboratorio de Investigación y Formación en Informática Avanzada; Argentina Fil: Smith, Clara. Universidad Nacional de La Plata. Facultad de Ciencias Jurídicas y Sociales; Argentina. Universidad Católica de La Plata; Argentina |
description |
The fact that many modal operators are part of an adjunction is probably folklore since the discovery of adjunctions. On the other hand, the natural idea of a minimal propositional calculus extended with a pair of adjoint operators seems to have been formulated only very recently. This recent research, mainly motivated by applications in computer science, concentrates on technical issues related to the calculi and not on the significance of adjunctions in modal logic. It then seems a worthy enterprise (both for these contemporary topical pursuits and also for historical interest) to trace the concept of adjunction back to the origins of the algebraic semantics of modal logic and to make explicit its ubiquity in this branch of mathematics. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/76821 Menni, Matías; Smith, Clara; Modes of Adjointness; Kluwer Academic Publishers; Journal of Philosophical Logic; 43; 2-3; 6-2014; 365-391 0022-3611 1573-0433 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/76821 |
identifier_str_mv |
Menni, Matías; Smith, Clara; Modes of Adjointness; Kluwer Academic Publishers; Journal of Philosophical Logic; 43; 2-3; 6-2014; 365-391 0022-3611 1573-0433 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://link.springer.com/article/10.1007%2Fs10992-012-9266-y info:eu-repo/semantics/altIdentifier/doi/10.1007/s10992-012-9266-y |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Kluwer Academic Publishers |
publisher.none.fl_str_mv |
Kluwer Academic Publishers |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613423102427136 |
score |
13.070432 |