Level-Agnostic Representations of Interacting Agents

Autores
Tohmé, Fernando Abel; Fioriti, Andres
Año de publicación
2024
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The study of the interactions among intentional agents, with rationality being the main source of intentional behavior, requires mathematical tools capable of capturing systemic effects. Here, we choose an alternative toolbox based on Category Theory. We examine potential level-agnostic formalisms, presenting three categories: ℛ, , and an encompassing one, ℐ. The latter allows for representing dynamic rearrangements of the interactions among different agents. Systems represented in ℐ capture the dynamic interactions among the interfaces of their sub-agents, changing the connections among them based on their internal states. We illustrate the expressive power of this formalism in four different instances, providing practitioners with a toolbox for representing cases of interest and facilitating their modular analysis.
Fil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Fioriti, Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Materia
INTERACTIONS
CATEGORY THEORY
GAME THEORY
POLYNOMIAL FUNCTORS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/246326

id CONICETDig_955e3625a88a18b84f82ce17d89d5153
oai_identifier_str oai:ri.conicet.gov.ar:11336/246326
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Level-Agnostic Representations of Interacting AgentsTohmé, Fernando AbelFioriti, AndresINTERACTIONSCATEGORY THEORYGAME THEORYPOLYNOMIAL FUNCTORShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The study of the interactions among intentional agents, with rationality being the main source of intentional behavior, requires mathematical tools capable of capturing systemic effects. Here, we choose an alternative toolbox based on Category Theory. We examine potential level-agnostic formalisms, presenting three categories: ℛ, , and an encompassing one, ℐ. The latter allows for representing dynamic rearrangements of the interactions among different agents. Systems represented in ℐ capture the dynamic interactions among the interfaces of their sub-agents, changing the connections among them based on their internal states. We illustrate the expressive power of this formalism in four different instances, providing practitioners with a toolbox for representing cases of interest and facilitating their modular analysis.Fil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaFil: Fioriti, Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaMultidisciplinary Digital Publishing Institute2024-08-29info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/246326Tohmé, Fernando Abel; Fioriti, Andres; Level-Agnostic Representations of Interacting Agents; Multidisciplinary Digital Publishing Institute; Mathematics; 12; 17; 29-8-2024; 2697; 1-192227-7390CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2227-7390/12/17/2697info:eu-repo/semantics/altIdentifier/doi/10.3390/math12172697info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:34:12Zoai:ri.conicet.gov.ar:11336/246326instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:34:12.381CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Level-Agnostic Representations of Interacting Agents
title Level-Agnostic Representations of Interacting Agents
spellingShingle Level-Agnostic Representations of Interacting Agents
Tohmé, Fernando Abel
INTERACTIONS
CATEGORY THEORY
GAME THEORY
POLYNOMIAL FUNCTORS
title_short Level-Agnostic Representations of Interacting Agents
title_full Level-Agnostic Representations of Interacting Agents
title_fullStr Level-Agnostic Representations of Interacting Agents
title_full_unstemmed Level-Agnostic Representations of Interacting Agents
title_sort Level-Agnostic Representations of Interacting Agents
dc.creator.none.fl_str_mv Tohmé, Fernando Abel
Fioriti, Andres
author Tohmé, Fernando Abel
author_facet Tohmé, Fernando Abel
Fioriti, Andres
author_role author
author2 Fioriti, Andres
author2_role author
dc.subject.none.fl_str_mv INTERACTIONS
CATEGORY THEORY
GAME THEORY
POLYNOMIAL FUNCTORS
topic INTERACTIONS
CATEGORY THEORY
GAME THEORY
POLYNOMIAL FUNCTORS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The study of the interactions among intentional agents, with rationality being the main source of intentional behavior, requires mathematical tools capable of capturing systemic effects. Here, we choose an alternative toolbox based on Category Theory. We examine potential level-agnostic formalisms, presenting three categories: ℛ, , and an encompassing one, ℐ. The latter allows for representing dynamic rearrangements of the interactions among different agents. Systems represented in ℐ capture the dynamic interactions among the interfaces of their sub-agents, changing the connections among them based on their internal states. We illustrate the expressive power of this formalism in four different instances, providing practitioners with a toolbox for representing cases of interest and facilitating their modular analysis.
Fil: Tohmé, Fernando Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
Fil: Fioriti, Andres. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina
description The study of the interactions among intentional agents, with rationality being the main source of intentional behavior, requires mathematical tools capable of capturing systemic effects. Here, we choose an alternative toolbox based on Category Theory. We examine potential level-agnostic formalisms, presenting three categories: ℛ, , and an encompassing one, ℐ. The latter allows for representing dynamic rearrangements of the interactions among different agents. Systems represented in ℐ capture the dynamic interactions among the interfaces of their sub-agents, changing the connections among them based on their internal states. We illustrate the expressive power of this formalism in four different instances, providing practitioners with a toolbox for representing cases of interest and facilitating their modular analysis.
publishDate 2024
dc.date.none.fl_str_mv 2024-08-29
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/246326
Tohmé, Fernando Abel; Fioriti, Andres; Level-Agnostic Representations of Interacting Agents; Multidisciplinary Digital Publishing Institute; Mathematics; 12; 17; 29-8-2024; 2697; 1-19
2227-7390
CONICET Digital
CONICET
url http://hdl.handle.net/11336/246326
identifier_str_mv Tohmé, Fernando Abel; Fioriti, Andres; Level-Agnostic Representations of Interacting Agents; Multidisciplinary Digital Publishing Institute; Mathematics; 12; 17; 29-8-2024; 2697; 1-19
2227-7390
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.mdpi.com/2227-7390/12/17/2697
info:eu-repo/semantics/altIdentifier/doi/10.3390/math12172697
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute
publisher.none.fl_str_mv Multidisciplinary Digital Publishing Institute
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614358528688128
score 13.070432