About И-quantifiers

Autores
Menni, Matías
Año de publicación
2003
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Gabbay and Pitts observed that the Fraenkel–Mostowski model of set-theory supports useful notions of “name-abstraction” and “fresh-name”. In order to understand their work in a more general setting we introduce the notions of И-units and И-relations in a regular category D. A И-relation is given by a functor A # (-):D→D and we show that in the case that D is a topos then A # (-) has a right adjoint [A](-) that can be thought of as an object of abstractions. We also explore the existence of a right adjoint to [A](-) and relate it to the “name swapping” operations considered as fundamental by Gabbay and Pitts. We present many examples of categories where this notions occur and we relate the results here with Pitts' Nominal Logic.
Laboratorio de Investigación y Formación en Informática Avanzada
Materia
Informática
quantifiers
adjoint functors
variable binding
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/138799

id SEDICI_32e57a80d92c8f5ce80e446a2cb0eac8
oai_identifier_str oai:sedici.unlp.edu.ar:10915/138799
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling About И-quantifiersMenni, MatíasInformáticaquantifiersadjoint functorsvariable bindingGabbay and Pitts observed that the Fraenkel–Mostowski model of set-theory supports useful notions of “name-abstraction” and “fresh-name”. In order to understand their work in a more general setting we introduce the notions of И-units and И-relations in a regular category D. A И-relation is given by a functor A # (-):D→D and we show that in the case that D is a topos then A # (-) has a right adjoint [A](-) that can be thought of as an object of abstractions. We also explore the existence of a right adjoint to [A](-) and relate it to the “name swapping” operations considered as fundamental by Gabbay and Pitts. We present many examples of categories where this notions occur and we relate the results here with Pitts' Nominal Logic.Laboratorio de Investigación y Formación en Informática Avanzada2003info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdf421-445http://sedici.unlp.edu.ar/handle/10915/138799enginfo:eu-repo/semantics/altIdentifier/issn/0927-2852info:eu-repo/semantics/altIdentifier/issn/1572-9095info:eu-repo/semantics/altIdentifier/doi/10.1023/a:1025750816098info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Creative Commons Attribution 4.0 International (CC BY 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-10T12:34:44Zoai:sedici.unlp.edu.ar:10915/138799Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-10 12:34:44.334SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv About И-quantifiers
title About И-quantifiers
spellingShingle About И-quantifiers
Menni, Matías
Informática
quantifiers
adjoint functors
variable binding
title_short About И-quantifiers
title_full About И-quantifiers
title_fullStr About И-quantifiers
title_full_unstemmed About И-quantifiers
title_sort About И-quantifiers
dc.creator.none.fl_str_mv Menni, Matías
author Menni, Matías
author_facet Menni, Matías
author_role author
dc.subject.none.fl_str_mv Informática
quantifiers
adjoint functors
variable binding
topic Informática
quantifiers
adjoint functors
variable binding
dc.description.none.fl_txt_mv Gabbay and Pitts observed that the Fraenkel–Mostowski model of set-theory supports useful notions of “name-abstraction” and “fresh-name”. In order to understand their work in a more general setting we introduce the notions of И-units and И-relations in a regular category D. A И-relation is given by a functor A # (-):D→D and we show that in the case that D is a topos then A # (-) has a right adjoint [A](-) that can be thought of as an object of abstractions. We also explore the existence of a right adjoint to [A](-) and relate it to the “name swapping” operations considered as fundamental by Gabbay and Pitts. We present many examples of categories where this notions occur and we relate the results here with Pitts' Nominal Logic.
Laboratorio de Investigación y Formación en Informática Avanzada
description Gabbay and Pitts observed that the Fraenkel–Mostowski model of set-theory supports useful notions of “name-abstraction” and “fresh-name”. In order to understand their work in a more general setting we introduce the notions of И-units and И-relations in a regular category D. A И-relation is given by a functor A # (-):D→D and we show that in the case that D is a topos then A # (-) has a right adjoint [A](-) that can be thought of as an object of abstractions. We also explore the existence of a right adjoint to [A](-) and relate it to the “name swapping” operations considered as fundamental by Gabbay and Pitts. We present many examples of categories where this notions occur and we relate the results here with Pitts' Nominal Logic.
publishDate 2003
dc.date.none.fl_str_mv 2003
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/138799
url http://sedici.unlp.edu.ar/handle/10915/138799
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0927-2852
info:eu-repo/semantics/altIdentifier/issn/1572-9095
info:eu-repo/semantics/altIdentifier/doi/10.1023/a:1025750816098
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
Creative Commons Attribution 4.0 International (CC BY 4.0)
dc.format.none.fl_str_mv application/pdf
421-445
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842904482765078528
score 12.993085