Spectral functions of non-essentially self-adjoint operators
- Autores
- Falomir, Horacio Alberto; Pisani, P. A. G.
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- One of the many problems to which Dowker devoted his attention is the effect of a conical singularity in the base manifold on the behavior of the quantum fields. In particular, he studied the small-t asymptotic expansion of the heatkernel trace on a cone and its effects on physical quantities as the Casimir energy. In this paper, we review some peculiar results found in the last decade, regarding the appearance of non-standard powers of t, and even negative integer powers of log t, in this asymptotic expansion for the self-adjoint extensions of some symmetric operators with singular coefficients. Similarly, we show that the ? -function associated with these self-adjoint extensions presents an unusual analytic structure. © 2012 IOP Publishing Ltd.
Fil: Falomir, Horacio Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina
Fil: Pisani, P. A. G.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina - Materia
-
SELF-ADJOINT EXTENSIONS
SPECTRAL FUNCTIONS
KREIN'S FORMULA - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/74571
Ver los metadatos del registro completo
id |
CONICETDig_36100fe957264be8a3e08896c5f5edf5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/74571 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Spectral functions of non-essentially self-adjoint operatorsFalomir, Horacio AlbertoPisani, P. A. G.SELF-ADJOINT EXTENSIONSSPECTRAL FUNCTIONSKREIN'S FORMULAhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1https://purl.org/becyt/ford/1.3https://purl.org/becyt/ford/1One of the many problems to which Dowker devoted his attention is the effect of a conical singularity in the base manifold on the behavior of the quantum fields. In particular, he studied the small-t asymptotic expansion of the heatkernel trace on a cone and its effects on physical quantities as the Casimir energy. In this paper, we review some peculiar results found in the last decade, regarding the appearance of non-standard powers of t, and even negative integer powers of log t, in this asymptotic expansion for the self-adjoint extensions of some symmetric operators with singular coefficients. Similarly, we show that the ? -function associated with these self-adjoint extensions presents an unusual analytic structure. © 2012 IOP Publishing Ltd.Fil: Falomir, Horacio Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaFil: Pisani, P. A. G.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; ArgentinaIOP Publishing2012-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/74571Falomir, Horacio Alberto; Pisani, P. A. G.; Spectral functions of non-essentially self-adjoint operators; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 45; 37; 9-2012; 1-431751-8113CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8113/45/37/374017info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/1751-8121/45/37/374017info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:12:32Zoai:ri.conicet.gov.ar:11336/74571instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:12:32.487CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Spectral functions of non-essentially self-adjoint operators |
title |
Spectral functions of non-essentially self-adjoint operators |
spellingShingle |
Spectral functions of non-essentially self-adjoint operators Falomir, Horacio Alberto SELF-ADJOINT EXTENSIONS SPECTRAL FUNCTIONS KREIN'S FORMULA |
title_short |
Spectral functions of non-essentially self-adjoint operators |
title_full |
Spectral functions of non-essentially self-adjoint operators |
title_fullStr |
Spectral functions of non-essentially self-adjoint operators |
title_full_unstemmed |
Spectral functions of non-essentially self-adjoint operators |
title_sort |
Spectral functions of non-essentially self-adjoint operators |
dc.creator.none.fl_str_mv |
Falomir, Horacio Alberto Pisani, P. A. G. |
author |
Falomir, Horacio Alberto |
author_facet |
Falomir, Horacio Alberto Pisani, P. A. G. |
author_role |
author |
author2 |
Pisani, P. A. G. |
author2_role |
author |
dc.subject.none.fl_str_mv |
SELF-ADJOINT EXTENSIONS SPECTRAL FUNCTIONS KREIN'S FORMULA |
topic |
SELF-ADJOINT EXTENSIONS SPECTRAL FUNCTIONS KREIN'S FORMULA |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 https://purl.org/becyt/ford/1.3 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
One of the many problems to which Dowker devoted his attention is the effect of a conical singularity in the base manifold on the behavior of the quantum fields. In particular, he studied the small-t asymptotic expansion of the heatkernel trace on a cone and its effects on physical quantities as the Casimir energy. In this paper, we review some peculiar results found in the last decade, regarding the appearance of non-standard powers of t, and even negative integer powers of log t, in this asymptotic expansion for the self-adjoint extensions of some symmetric operators with singular coefficients. Similarly, we show that the ? -function associated with these self-adjoint extensions presents an unusual analytic structure. © 2012 IOP Publishing Ltd. Fil: Falomir, Horacio Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina Fil: Pisani, P. A. G.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física La Plata; Argentina |
description |
One of the many problems to which Dowker devoted his attention is the effect of a conical singularity in the base manifold on the behavior of the quantum fields. In particular, he studied the small-t asymptotic expansion of the heatkernel trace on a cone and its effects on physical quantities as the Casimir energy. In this paper, we review some peculiar results found in the last decade, regarding the appearance of non-standard powers of t, and even negative integer powers of log t, in this asymptotic expansion for the self-adjoint extensions of some symmetric operators with singular coefficients. Similarly, we show that the ? -function associated with these self-adjoint extensions presents an unusual analytic structure. © 2012 IOP Publishing Ltd. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/74571 Falomir, Horacio Alberto; Pisani, P. A. G.; Spectral functions of non-essentially self-adjoint operators; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 45; 37; 9-2012; 1-43 1751-8113 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/74571 |
identifier_str_mv |
Falomir, Horacio Alberto; Pisani, P. A. G.; Spectral functions of non-essentially self-adjoint operators; IOP Publishing; Journal of Physics A: Mathematical and Theoretical; 45; 37; 9-2012; 1-43 1751-8113 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1088/1751-8113/45/37/374017 info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/1751-8121/45/37/374017 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
IOP Publishing |
publisher.none.fl_str_mv |
IOP Publishing |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980653937721344 |
score |
12.993085 |