The limit as p→ ∞ in the eigenvalue problem for a system of p-Laplacians
- Autores
- Bonheure, Denis; Rossi, Julio Daniel; Saintier, Nicolas Bernard Claude
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, we study the behavior as p→ ∞ of eigenvalues and eigenfunctions of a system of p-Laplacians, that is (Formula presented.) in a bounded smooth domain Ω. Here α+ β= p. We assume that α/p→Γ and β/p→1-Γ as p→ ∞ and we prove that for the first eigenvalue λ1,p we have (λ1,p)1/p→λ∞=1/maxx∈Ωdist(x,∂Ω).Concerning the eigenfunctions (up, vp) associated with λ1,p normalized by ∫Ω|up|α|vp|β=1, there is a uniform limit (u∞, v∞) that is a solution to a limit minimization problem as well as a viscosity solution to (Formula presented.) In addition, we also analyze the limit PDE when we consider higher eigenvalues.
Fil: Bonheure, Denis. Université Libre de Bruxelles; Bélgica
Fil: Rossi, Julio Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Saintier, Nicolas Bernard Claude. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
INFINITY LAPLACIAN
NONLINEAR EIGENVALUE PROBLEM
P-LAPLACIAN
VISCOSITY SOLUTIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/59873
Ver los metadatos del registro completo
| id |
CONICETDig_5b13a08c38ff954ce7eabbc302c4b320 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/59873 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
The limit as p→ ∞ in the eigenvalue problem for a system of p-LaplaciansBonheure, DenisRossi, Julio DanielSaintier, Nicolas Bernard ClaudeINFINITY LAPLACIANNONLINEAR EIGENVALUE PROBLEMP-LAPLACIANVISCOSITY SOLUTIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper, we study the behavior as p→ ∞ of eigenvalues and eigenfunctions of a system of p-Laplacians, that is (Formula presented.) in a bounded smooth domain Ω. Here α+ β= p. We assume that α/p→Γ and β/p→1-Γ as p→ ∞ and we prove that for the first eigenvalue λ1,p we have (λ1,p)1/p→λ∞=1/maxx∈Ωdist(x,∂Ω).Concerning the eigenfunctions (up, vp) associated with λ1,p normalized by ∫Ω|up|α|vp|β=1, there is a uniform limit (u∞, v∞) that is a solution to a limit minimization problem as well as a viscosity solution to (Formula presented.) In addition, we also analyze the limit PDE when we consider higher eigenvalues.Fil: Bonheure, Denis. Université Libre de Bruxelles; BélgicaFil: Rossi, Julio Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Saintier, Nicolas Bernard Claude. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSpringer Heidelberg2016-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/59873Bonheure, Denis; Rossi, Julio Daniel; Saintier, Nicolas Bernard Claude; The limit as p→ ∞ in the eigenvalue problem for a system of p-Laplacians; Springer Heidelberg; Annali Di Matematica Pura Ed Applicata; 195; 5; 10-2016; 1771-17850373-31141618-1891CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10231-015-0547-2info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10231-015-0547-2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-11-12T09:44:16Zoai:ri.conicet.gov.ar:11336/59873instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-11-12 09:44:16.808CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
The limit as p→ ∞ in the eigenvalue problem for a system of p-Laplacians |
| title |
The limit as p→ ∞ in the eigenvalue problem for a system of p-Laplacians |
| spellingShingle |
The limit as p→ ∞ in the eigenvalue problem for a system of p-Laplacians Bonheure, Denis INFINITY LAPLACIAN NONLINEAR EIGENVALUE PROBLEM P-LAPLACIAN VISCOSITY SOLUTIONS |
| title_short |
The limit as p→ ∞ in the eigenvalue problem for a system of p-Laplacians |
| title_full |
The limit as p→ ∞ in the eigenvalue problem for a system of p-Laplacians |
| title_fullStr |
The limit as p→ ∞ in the eigenvalue problem for a system of p-Laplacians |
| title_full_unstemmed |
The limit as p→ ∞ in the eigenvalue problem for a system of p-Laplacians |
| title_sort |
The limit as p→ ∞ in the eigenvalue problem for a system of p-Laplacians |
| dc.creator.none.fl_str_mv |
Bonheure, Denis Rossi, Julio Daniel Saintier, Nicolas Bernard Claude |
| author |
Bonheure, Denis |
| author_facet |
Bonheure, Denis Rossi, Julio Daniel Saintier, Nicolas Bernard Claude |
| author_role |
author |
| author2 |
Rossi, Julio Daniel Saintier, Nicolas Bernard Claude |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
INFINITY LAPLACIAN NONLINEAR EIGENVALUE PROBLEM P-LAPLACIAN VISCOSITY SOLUTIONS |
| topic |
INFINITY LAPLACIAN NONLINEAR EIGENVALUE PROBLEM P-LAPLACIAN VISCOSITY SOLUTIONS |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
In this paper, we study the behavior as p→ ∞ of eigenvalues and eigenfunctions of a system of p-Laplacians, that is (Formula presented.) in a bounded smooth domain Ω. Here α+ β= p. We assume that α/p→Γ and β/p→1-Γ as p→ ∞ and we prove that for the first eigenvalue λ1,p we have (λ1,p)1/p→λ∞=1/maxx∈Ωdist(x,∂Ω).Concerning the eigenfunctions (up, vp) associated with λ1,p normalized by ∫Ω|up|α|vp|β=1, there is a uniform limit (u∞, v∞) that is a solution to a limit minimization problem as well as a viscosity solution to (Formula presented.) In addition, we also analyze the limit PDE when we consider higher eigenvalues. Fil: Bonheure, Denis. Université Libre de Bruxelles; Bélgica Fil: Rossi, Julio Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Saintier, Nicolas Bernard Claude. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
| description |
In this paper, we study the behavior as p→ ∞ of eigenvalues and eigenfunctions of a system of p-Laplacians, that is (Formula presented.) in a bounded smooth domain Ω. Here α+ β= p. We assume that α/p→Γ and β/p→1-Γ as p→ ∞ and we prove that for the first eigenvalue λ1,p we have (λ1,p)1/p→λ∞=1/maxx∈Ωdist(x,∂Ω).Concerning the eigenfunctions (up, vp) associated with λ1,p normalized by ∫Ω|up|α|vp|β=1, there is a uniform limit (u∞, v∞) that is a solution to a limit minimization problem as well as a viscosity solution to (Formula presented.) In addition, we also analyze the limit PDE when we consider higher eigenvalues. |
| publishDate |
2016 |
| dc.date.none.fl_str_mv |
2016-10 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/59873 Bonheure, Denis; Rossi, Julio Daniel; Saintier, Nicolas Bernard Claude; The limit as p→ ∞ in the eigenvalue problem for a system of p-Laplacians; Springer Heidelberg; Annali Di Matematica Pura Ed Applicata; 195; 5; 10-2016; 1771-1785 0373-3114 1618-1891 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/59873 |
| identifier_str_mv |
Bonheure, Denis; Rossi, Julio Daniel; Saintier, Nicolas Bernard Claude; The limit as p→ ∞ in the eigenvalue problem for a system of p-Laplacians; Springer Heidelberg; Annali Di Matematica Pura Ed Applicata; 195; 5; 10-2016; 1771-1785 0373-3114 1618-1891 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10231-015-0547-2 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10231-015-0547-2 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Springer Heidelberg |
| publisher.none.fl_str_mv |
Springer Heidelberg |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1848597758373527552 |
| score |
12.976206 |