The limit as p→ ∞ in the eigenvalue problem for a system of p-Laplacians
- Autores
- Bonheure, Denis; Rossi, Julio Daniel; Saintier, Nicolas Bernard Claude
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper, we study the behavior as p→ ∞ of eigenvalues and eigenfunctions of a system of p-Laplacians, that is (Formula presented.) in a bounded smooth domain Ω. Here α+ β= p. We assume that α/p→Γ and β/p→1-Γ as p→ ∞ and we prove that for the first eigenvalue λ1,p we have (λ1,p)1/p→λ∞=1/maxx∈Ωdist(x,∂Ω).Concerning the eigenfunctions (up, vp) associated with λ1,p normalized by ∫Ω|up|α|vp|β=1, there is a uniform limit (u∞, v∞) that is a solution to a limit minimization problem as well as a viscosity solution to (Formula presented.) In addition, we also analyze the limit PDE when we consider higher eigenvalues.
Fil: Bonheure, Denis. Université Libre de Bruxelles; Bélgica
Fil: Rossi, Julio Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Saintier, Nicolas Bernard Claude. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
INFINITY LAPLACIAN
NONLINEAR EIGENVALUE PROBLEM
P-LAPLACIAN
VISCOSITY SOLUTIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/59873
Ver los metadatos del registro completo
id |
CONICETDig_5b13a08c38ff954ce7eabbc302c4b320 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/59873 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The limit as p→ ∞ in the eigenvalue problem for a system of p-LaplaciansBonheure, DenisRossi, Julio DanielSaintier, Nicolas Bernard ClaudeINFINITY LAPLACIANNONLINEAR EIGENVALUE PROBLEMP-LAPLACIANVISCOSITY SOLUTIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper, we study the behavior as p→ ∞ of eigenvalues and eigenfunctions of a system of p-Laplacians, that is (Formula presented.) in a bounded smooth domain Ω. Here α+ β= p. We assume that α/p→Γ and β/p→1-Γ as p→ ∞ and we prove that for the first eigenvalue λ1,p we have (λ1,p)1/p→λ∞=1/maxx∈Ωdist(x,∂Ω).Concerning the eigenfunctions (up, vp) associated with λ1,p normalized by ∫Ω|up|α|vp|β=1, there is a uniform limit (u∞, v∞) that is a solution to a limit minimization problem as well as a viscosity solution to (Formula presented.) In addition, we also analyze the limit PDE when we consider higher eigenvalues.Fil: Bonheure, Denis. Université Libre de Bruxelles; BélgicaFil: Rossi, Julio Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Saintier, Nicolas Bernard Claude. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaSpringer Heidelberg2016-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/59873Bonheure, Denis; Rossi, Julio Daniel; Saintier, Nicolas Bernard Claude; The limit as p→ ∞ in the eigenvalue problem for a system of p-Laplacians; Springer Heidelberg; Annali Di Matematica Pura Ed Applicata; 195; 5; 10-2016; 1771-17850373-31141618-1891CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s10231-015-0547-2info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10231-015-0547-2info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:55:17Zoai:ri.conicet.gov.ar:11336/59873instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:55:17.839CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The limit as p→ ∞ in the eigenvalue problem for a system of p-Laplacians |
title |
The limit as p→ ∞ in the eigenvalue problem for a system of p-Laplacians |
spellingShingle |
The limit as p→ ∞ in the eigenvalue problem for a system of p-Laplacians Bonheure, Denis INFINITY LAPLACIAN NONLINEAR EIGENVALUE PROBLEM P-LAPLACIAN VISCOSITY SOLUTIONS |
title_short |
The limit as p→ ∞ in the eigenvalue problem for a system of p-Laplacians |
title_full |
The limit as p→ ∞ in the eigenvalue problem for a system of p-Laplacians |
title_fullStr |
The limit as p→ ∞ in the eigenvalue problem for a system of p-Laplacians |
title_full_unstemmed |
The limit as p→ ∞ in the eigenvalue problem for a system of p-Laplacians |
title_sort |
The limit as p→ ∞ in the eigenvalue problem for a system of p-Laplacians |
dc.creator.none.fl_str_mv |
Bonheure, Denis Rossi, Julio Daniel Saintier, Nicolas Bernard Claude |
author |
Bonheure, Denis |
author_facet |
Bonheure, Denis Rossi, Julio Daniel Saintier, Nicolas Bernard Claude |
author_role |
author |
author2 |
Rossi, Julio Daniel Saintier, Nicolas Bernard Claude |
author2_role |
author author |
dc.subject.none.fl_str_mv |
INFINITY LAPLACIAN NONLINEAR EIGENVALUE PROBLEM P-LAPLACIAN VISCOSITY SOLUTIONS |
topic |
INFINITY LAPLACIAN NONLINEAR EIGENVALUE PROBLEM P-LAPLACIAN VISCOSITY SOLUTIONS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper, we study the behavior as p→ ∞ of eigenvalues and eigenfunctions of a system of p-Laplacians, that is (Formula presented.) in a bounded smooth domain Ω. Here α+ β= p. We assume that α/p→Γ and β/p→1-Γ as p→ ∞ and we prove that for the first eigenvalue λ1,p we have (λ1,p)1/p→λ∞=1/maxx∈Ωdist(x,∂Ω).Concerning the eigenfunctions (up, vp) associated with λ1,p normalized by ∫Ω|up|α|vp|β=1, there is a uniform limit (u∞, v∞) that is a solution to a limit minimization problem as well as a viscosity solution to (Formula presented.) In addition, we also analyze the limit PDE when we consider higher eigenvalues. Fil: Bonheure, Denis. Université Libre de Bruxelles; Bélgica Fil: Rossi, Julio Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Saintier, Nicolas Bernard Claude. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
In this paper, we study the behavior as p→ ∞ of eigenvalues and eigenfunctions of a system of p-Laplacians, that is (Formula presented.) in a bounded smooth domain Ω. Here α+ β= p. We assume that α/p→Γ and β/p→1-Γ as p→ ∞ and we prove that for the first eigenvalue λ1,p we have (λ1,p)1/p→λ∞=1/maxx∈Ωdist(x,∂Ω).Concerning the eigenfunctions (up, vp) associated with λ1,p normalized by ∫Ω|up|α|vp|β=1, there is a uniform limit (u∞, v∞) that is a solution to a limit minimization problem as well as a viscosity solution to (Formula presented.) In addition, we also analyze the limit PDE when we consider higher eigenvalues. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-10 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/59873 Bonheure, Denis; Rossi, Julio Daniel; Saintier, Nicolas Bernard Claude; The limit as p→ ∞ in the eigenvalue problem for a system of p-Laplacians; Springer Heidelberg; Annali Di Matematica Pura Ed Applicata; 195; 5; 10-2016; 1771-1785 0373-3114 1618-1891 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/59873 |
identifier_str_mv |
Bonheure, Denis; Rossi, Julio Daniel; Saintier, Nicolas Bernard Claude; The limit as p→ ∞ in the eigenvalue problem for a system of p-Laplacians; Springer Heidelberg; Annali Di Matematica Pura Ed Applicata; 195; 5; 10-2016; 1771-1785 0373-3114 1618-1891 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s10231-015-0547-2 info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s10231-015-0547-2 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer Heidelberg |
publisher.none.fl_str_mv |
Springer Heidelberg |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269336057675776 |
score |
13.13397 |