Limits as p(x) → ∞ of p(x)-harmonic functions

Autores
Manfredi, Juan J.; Rossi, Julio Daniel; Urbano, Jose Miguel
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this note we study the limit as p(x) → ∞ of solutions to −∆p(x)u = 0 in a domain Ω, with Dirichlet boundary conditions. Our approach consists in considering sequences of variable exponents converging uniformly to +∞ and analyzing how the corresponding solutions of the problem converge and what equation is satisfied by the limit.
Fil: Manfredi, Juan J.. University Of Pittsburgh; Estados Unidos
Fil: Rossi, Julio Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Urbano, Jose Miguel. Universidad de Coimbra; Portugal
Materia
P(X)-Laplacian
Infinity Laplacian
Variable Exponents
Viscosity Solutions
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/16471

id CONICETDig_3e0fdeb443b913468564b14d1d35b011
oai_identifier_str oai:ri.conicet.gov.ar:11336/16471
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Limits as p(x) → ∞ of p(x)-harmonic functionsManfredi, Juan J.Rossi, Julio DanielUrbano, Jose MiguelP(X)-LaplacianInfinity LaplacianVariable ExponentsViscosity Solutionshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this note we study the limit as p(x) → ∞ of solutions to −∆p(x)u = 0 in a domain Ω, with Dirichlet boundary conditions. Our approach consists in considering sequences of variable exponents converging uniformly to +∞ and analyzing how the corresponding solutions of the problem converge and what equation is satisfied by the limit.Fil: Manfredi, Juan J.. University Of Pittsburgh; Estados UnidosFil: Rossi, Julio Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Urbano, Jose Miguel. Universidad de Coimbra; PortugalElsevier2010-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/16471Manfredi, Juan J.; Rossi, Julio Daniel; Urbano, Jose Miguel; Limits as p(x) → ∞ of p(x)-harmonic functions; Elsevier; Journal Of Nonlinear Analysis; 72; 1; 1-2010; 309-3150362-546Xenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.na.2009.06.054info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0362546X09008323info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:48:12Zoai:ri.conicet.gov.ar:11336/16471instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:48:12.52CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Limits as p(x) → ∞ of p(x)-harmonic functions
title Limits as p(x) → ∞ of p(x)-harmonic functions
spellingShingle Limits as p(x) → ∞ of p(x)-harmonic functions
Manfredi, Juan J.
P(X)-Laplacian
Infinity Laplacian
Variable Exponents
Viscosity Solutions
title_short Limits as p(x) → ∞ of p(x)-harmonic functions
title_full Limits as p(x) → ∞ of p(x)-harmonic functions
title_fullStr Limits as p(x) → ∞ of p(x)-harmonic functions
title_full_unstemmed Limits as p(x) → ∞ of p(x)-harmonic functions
title_sort Limits as p(x) → ∞ of p(x)-harmonic functions
dc.creator.none.fl_str_mv Manfredi, Juan J.
Rossi, Julio Daniel
Urbano, Jose Miguel
author Manfredi, Juan J.
author_facet Manfredi, Juan J.
Rossi, Julio Daniel
Urbano, Jose Miguel
author_role author
author2 Rossi, Julio Daniel
Urbano, Jose Miguel
author2_role author
author
dc.subject.none.fl_str_mv P(X)-Laplacian
Infinity Laplacian
Variable Exponents
Viscosity Solutions
topic P(X)-Laplacian
Infinity Laplacian
Variable Exponents
Viscosity Solutions
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this note we study the limit as p(x) → ∞ of solutions to −∆p(x)u = 0 in a domain Ω, with Dirichlet boundary conditions. Our approach consists in considering sequences of variable exponents converging uniformly to +∞ and analyzing how the corresponding solutions of the problem converge and what equation is satisfied by the limit.
Fil: Manfredi, Juan J.. University Of Pittsburgh; Estados Unidos
Fil: Rossi, Julio Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Urbano, Jose Miguel. Universidad de Coimbra; Portugal
description In this note we study the limit as p(x) → ∞ of solutions to −∆p(x)u = 0 in a domain Ω, with Dirichlet boundary conditions. Our approach consists in considering sequences of variable exponents converging uniformly to +∞ and analyzing how the corresponding solutions of the problem converge and what equation is satisfied by the limit.
publishDate 2010
dc.date.none.fl_str_mv 2010-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/16471
Manfredi, Juan J.; Rossi, Julio Daniel; Urbano, Jose Miguel; Limits as p(x) → ∞ of p(x)-harmonic functions; Elsevier; Journal Of Nonlinear Analysis; 72; 1; 1-2010; 309-315
0362-546X
url http://hdl.handle.net/11336/16471
identifier_str_mv Manfredi, Juan J.; Rossi, Julio Daniel; Urbano, Jose Miguel; Limits as p(x) → ∞ of p(x)-harmonic functions; Elsevier; Journal Of Nonlinear Analysis; 72; 1; 1-2010; 309-315
0362-546X
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.na.2009.06.054
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0362546X09008323
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268910301216768
score 13.13397