Limits as p(x) → ∞ of p(x)-harmonic functions
- Autores
- Manfredi, Juan J.; Rossi, Julio Daniel; Urbano, Jose Miguel
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this note we study the limit as p(x) → ∞ of solutions to −∆p(x)u = 0 in a domain Ω, with Dirichlet boundary conditions. Our approach consists in considering sequences of variable exponents converging uniformly to +∞ and analyzing how the corresponding solutions of the problem converge and what equation is satisfied by the limit.
Fil: Manfredi, Juan J.. University Of Pittsburgh; Estados Unidos
Fil: Rossi, Julio Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Urbano, Jose Miguel. Universidad de Coimbra; Portugal - Materia
-
P(X)-Laplacian
Infinity Laplacian
Variable Exponents
Viscosity Solutions - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/16471
Ver los metadatos del registro completo
id |
CONICETDig_3e0fdeb443b913468564b14d1d35b011 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/16471 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Limits as p(x) → ∞ of p(x)-harmonic functionsManfredi, Juan J.Rossi, Julio DanielUrbano, Jose MiguelP(X)-LaplacianInfinity LaplacianVariable ExponentsViscosity Solutionshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this note we study the limit as p(x) → ∞ of solutions to −∆p(x)u = 0 in a domain Ω, with Dirichlet boundary conditions. Our approach consists in considering sequences of variable exponents converging uniformly to +∞ and analyzing how the corresponding solutions of the problem converge and what equation is satisfied by the limit.Fil: Manfredi, Juan J.. University Of Pittsburgh; Estados UnidosFil: Rossi, Julio Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Urbano, Jose Miguel. Universidad de Coimbra; PortugalElsevier2010-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/16471Manfredi, Juan J.; Rossi, Julio Daniel; Urbano, Jose Miguel; Limits as p(x) → ∞ of p(x)-harmonic functions; Elsevier; Journal Of Nonlinear Analysis; 72; 1; 1-2010; 309-3150362-546Xenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.na.2009.06.054info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0362546X09008323info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:48:12Zoai:ri.conicet.gov.ar:11336/16471instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:48:12.52CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Limits as p(x) → ∞ of p(x)-harmonic functions |
title |
Limits as p(x) → ∞ of p(x)-harmonic functions |
spellingShingle |
Limits as p(x) → ∞ of p(x)-harmonic functions Manfredi, Juan J. P(X)-Laplacian Infinity Laplacian Variable Exponents Viscosity Solutions |
title_short |
Limits as p(x) → ∞ of p(x)-harmonic functions |
title_full |
Limits as p(x) → ∞ of p(x)-harmonic functions |
title_fullStr |
Limits as p(x) → ∞ of p(x)-harmonic functions |
title_full_unstemmed |
Limits as p(x) → ∞ of p(x)-harmonic functions |
title_sort |
Limits as p(x) → ∞ of p(x)-harmonic functions |
dc.creator.none.fl_str_mv |
Manfredi, Juan J. Rossi, Julio Daniel Urbano, Jose Miguel |
author |
Manfredi, Juan J. |
author_facet |
Manfredi, Juan J. Rossi, Julio Daniel Urbano, Jose Miguel |
author_role |
author |
author2 |
Rossi, Julio Daniel Urbano, Jose Miguel |
author2_role |
author author |
dc.subject.none.fl_str_mv |
P(X)-Laplacian Infinity Laplacian Variable Exponents Viscosity Solutions |
topic |
P(X)-Laplacian Infinity Laplacian Variable Exponents Viscosity Solutions |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this note we study the limit as p(x) → ∞ of solutions to −∆p(x)u = 0 in a domain Ω, with Dirichlet boundary conditions. Our approach consists in considering sequences of variable exponents converging uniformly to +∞ and analyzing how the corresponding solutions of the problem converge and what equation is satisfied by the limit. Fil: Manfredi, Juan J.. University Of Pittsburgh; Estados Unidos Fil: Rossi, Julio Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Urbano, Jose Miguel. Universidad de Coimbra; Portugal |
description |
In this note we study the limit as p(x) → ∞ of solutions to −∆p(x)u = 0 in a domain Ω, with Dirichlet boundary conditions. Our approach consists in considering sequences of variable exponents converging uniformly to +∞ and analyzing how the corresponding solutions of the problem converge and what equation is satisfied by the limit. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/16471 Manfredi, Juan J.; Rossi, Julio Daniel; Urbano, Jose Miguel; Limits as p(x) → ∞ of p(x)-harmonic functions; Elsevier; Journal Of Nonlinear Analysis; 72; 1; 1-2010; 309-315 0362-546X |
url |
http://hdl.handle.net/11336/16471 |
identifier_str_mv |
Manfredi, Juan J.; Rossi, Julio Daniel; Urbano, Jose Miguel; Limits as p(x) → ∞ of p(x)-harmonic functions; Elsevier; Journal Of Nonlinear Analysis; 72; 1; 1-2010; 309-315 0362-546X |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.na.2009.06.054 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0362546X09008323 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268910301216768 |
score |
13.13397 |