Eigenvalues for systems of fractional p-Laplacians
- Autores
- del Pezzo, Leandro Martin; Rossi, Julio Daniel
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We study the eigenvalue problem for a system of fractional p-Laplacians, that is, (-Δp)ru=λαp|u|α-2u|v|β(-Δp)sv=λβp|u|α|v|β-2vu=v=0in Ω,in Ω,in Ωc=RNΩ. We show that there is a first (smallest) eigenvalue that is simple and has associated eigenpairs composed of positive and bounded functions. Moreover, there is a sequence of eigenvalues λn such that λn→∞ as n→∞ . In addition, we study the limit as p→∞ of the first eigenvalue, λ1,p, and we obtain [λ1,p]1/p→Λ1,∞ as p→∞, where Λ1,∞=inf(u,v){max{[u]r,∞[v]s,∞}∥|u|Γ|v|1-Γ∥L∞(Ω)}=[1R(Ω)](1-Γ)s+Γr. Here, R(Ω):= maxx∈Ω dist(x,∂Ω) and [w]t,∞:=sup(x,y)∈Ω|w(y)-w(x)||x-y|t. Finally, we identify a PDE problem satisfied, in the viscosity sense, by any possible uniform limit along subsequences of the eigenpairs.
Fil: del Pezzo, Leandro Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Fil: Rossi, Julio Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
EIGENVALUE PROBLEMS
FRACTIONAL OPERATORS
P-LAPLACIAN - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/98262
Ver los metadatos del registro completo
id |
CONICETDig_207298e11f0c724e1a846dc5f9cfd059 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/98262 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Eigenvalues for systems of fractional p-Laplaciansdel Pezzo, Leandro MartinRossi, Julio DanielEIGENVALUE PROBLEMSFRACTIONAL OPERATORSP-LAPLACIANhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We study the eigenvalue problem for a system of fractional p-Laplacians, that is, (-Δp)ru=λαp|u|α-2u|v|β(-Δp)sv=λβp|u|α|v|β-2vu=v=0in Ω,in Ω,in Ωc=RNΩ. We show that there is a first (smallest) eigenvalue that is simple and has associated eigenpairs composed of positive and bounded functions. Moreover, there is a sequence of eigenvalues λn such that λn→∞ as n→∞ . In addition, we study the limit as p→∞ of the first eigenvalue, λ1,p, and we obtain [λ1,p]1/p→Λ1,∞ as p→∞, where Λ1,∞=inf(u,v){max{[u]r,∞[v]s,∞}∥|u|Γ|v|1-Γ∥L∞(Ω)}=[1R(Ω)](1-Γ)s+Γr. Here, R(Ω):= maxx∈Ω dist(x,∂Ω) and [w]t,∞:=sup(x,y)∈Ω|w(y)-w(x)||x-y|t. Finally, we identify a PDE problem satisfied, in the viscosity sense, by any possible uniform limit along subsequences of the eigenpairs.Fil: del Pezzo, Leandro Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Rossi, Julio Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaRocky Mt Math Consortium2018-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/98262del Pezzo, Leandro Martin; Rossi, Julio Daniel; Eigenvalues for systems of fractional p-Laplacians; Rocky Mt Math Consortium; Rocky Mountain Journal Of Mathematics; 48; 4; 12-2018; 1077-11040035-7596CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/euclid.rmjm/1538272824info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:55:33Zoai:ri.conicet.gov.ar:11336/98262instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:55:33.485CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Eigenvalues for systems of fractional p-Laplacians |
title |
Eigenvalues for systems of fractional p-Laplacians |
spellingShingle |
Eigenvalues for systems of fractional p-Laplacians del Pezzo, Leandro Martin EIGENVALUE PROBLEMS FRACTIONAL OPERATORS P-LAPLACIAN |
title_short |
Eigenvalues for systems of fractional p-Laplacians |
title_full |
Eigenvalues for systems of fractional p-Laplacians |
title_fullStr |
Eigenvalues for systems of fractional p-Laplacians |
title_full_unstemmed |
Eigenvalues for systems of fractional p-Laplacians |
title_sort |
Eigenvalues for systems of fractional p-Laplacians |
dc.creator.none.fl_str_mv |
del Pezzo, Leandro Martin Rossi, Julio Daniel |
author |
del Pezzo, Leandro Martin |
author_facet |
del Pezzo, Leandro Martin Rossi, Julio Daniel |
author_role |
author |
author2 |
Rossi, Julio Daniel |
author2_role |
author |
dc.subject.none.fl_str_mv |
EIGENVALUE PROBLEMS FRACTIONAL OPERATORS P-LAPLACIAN |
topic |
EIGENVALUE PROBLEMS FRACTIONAL OPERATORS P-LAPLACIAN |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We study the eigenvalue problem for a system of fractional p-Laplacians, that is, (-Δp)ru=λαp|u|α-2u|v|β(-Δp)sv=λβp|u|α|v|β-2vu=v=0in Ω,in Ω,in Ωc=RNΩ. We show that there is a first (smallest) eigenvalue that is simple and has associated eigenpairs composed of positive and bounded functions. Moreover, there is a sequence of eigenvalues λn such that λn→∞ as n→∞ . In addition, we study the limit as p→∞ of the first eigenvalue, λ1,p, and we obtain [λ1,p]1/p→Λ1,∞ as p→∞, where Λ1,∞=inf(u,v){max{[u]r,∞[v]s,∞}∥|u|Γ|v|1-Γ∥L∞(Ω)}=[1R(Ω)](1-Γ)s+Γr. Here, R(Ω):= maxx∈Ω dist(x,∂Ω) and [w]t,∞:=sup(x,y)∈Ω|w(y)-w(x)||x-y|t. Finally, we identify a PDE problem satisfied, in the viscosity sense, by any possible uniform limit along subsequences of the eigenpairs. Fil: del Pezzo, Leandro Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina Fil: Rossi, Julio Daniel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We study the eigenvalue problem for a system of fractional p-Laplacians, that is, (-Δp)ru=λαp|u|α-2u|v|β(-Δp)sv=λβp|u|α|v|β-2vu=v=0in Ω,in Ω,in Ωc=RNΩ. We show that there is a first (smallest) eigenvalue that is simple and has associated eigenpairs composed of positive and bounded functions. Moreover, there is a sequence of eigenvalues λn such that λn→∞ as n→∞ . In addition, we study the limit as p→∞ of the first eigenvalue, λ1,p, and we obtain [λ1,p]1/p→Λ1,∞ as p→∞, where Λ1,∞=inf(u,v){max{[u]r,∞[v]s,∞}∥|u|Γ|v|1-Γ∥L∞(Ω)}=[1R(Ω)](1-Γ)s+Γr. Here, R(Ω):= maxx∈Ω dist(x,∂Ω) and [w]t,∞:=sup(x,y)∈Ω|w(y)-w(x)||x-y|t. Finally, we identify a PDE problem satisfied, in the viscosity sense, by any possible uniform limit along subsequences of the eigenpairs. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/98262 del Pezzo, Leandro Martin; Rossi, Julio Daniel; Eigenvalues for systems of fractional p-Laplacians; Rocky Mt Math Consortium; Rocky Mountain Journal Of Mathematics; 48; 4; 12-2018; 1077-1104 0035-7596 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/98262 |
identifier_str_mv |
del Pezzo, Leandro Martin; Rossi, Julio Daniel; Eigenvalues for systems of fractional p-Laplacians; Rocky Mt Math Consortium; Rocky Mountain Journal Of Mathematics; 48; 4; 12-2018; 1077-1104 0035-7596 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://projecteuclid.org/euclid.rmjm/1538272824 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Rocky Mt Math Consortium |
publisher.none.fl_str_mv |
Rocky Mt Math Consortium |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613674109501440 |
score |
13.070432 |