The first non-zero Neumann p-fractional eigenvalue
- Autores
- del Pezzo, Leandro Martin; Salort, Ariel Martin
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work we study the asymptotic behavior of the first non-zero Neumann p-fractional eigenvalue λ1(s,p) as s → 1- and as p → ∞. We show that there exists a constant K such that K(1-s)λ1(s,p) goes to the first non-zero Neumann eigenvalue of the p-Laplacian. While in the limit case p → ∞, we prove that λ-(1,s)1/p goes to an eigenvalue of the Hölder ∞-Laplacian.
Fil: del Pezzo, Leandro Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Salort, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina - Materia
-
Hölder Infinity Laplacian
Neumann Eigenvalues
Nonlinear Fractional Laplacian - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/37620
Ver los metadatos del registro completo
id |
CONICETDig_eebad738eb5cc81bc2c7026e5f44b632 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/37620 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The first non-zero Neumann p-fractional eigenvaluedel Pezzo, Leandro MartinSalort, Ariel MartinHölder Infinity LaplacianNeumann EigenvaluesNonlinear Fractional Laplacianhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this work we study the asymptotic behavior of the first non-zero Neumann p-fractional eigenvalue λ1(s,p) as s → 1- and as p → ∞. We show that there exists a constant K such that K(1-s)λ1(s,p) goes to the first non-zero Neumann eigenvalue of the p-Laplacian. While in the limit case p → ∞, we prove that λ-(1,s)1/p goes to an eigenvalue of the Hölder ∞-Laplacian.Fil: del Pezzo, Leandro Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Salort, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaPergamon-Elsevier Science Ltd2015-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/37620del Pezzo, Leandro Martin; Salort, Ariel Martin; The first non-zero Neumann p-fractional eigenvalue; Pergamon-Elsevier Science Ltd; Journal Of Nonlinear Analysis; 118; 1-2015; 130-1430362-546XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.na.2015.02.006info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0362546X15000462info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1409.0840info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:52:36Zoai:ri.conicet.gov.ar:11336/37620instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:52:36.836CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The first non-zero Neumann p-fractional eigenvalue |
title |
The first non-zero Neumann p-fractional eigenvalue |
spellingShingle |
The first non-zero Neumann p-fractional eigenvalue del Pezzo, Leandro Martin Hölder Infinity Laplacian Neumann Eigenvalues Nonlinear Fractional Laplacian |
title_short |
The first non-zero Neumann p-fractional eigenvalue |
title_full |
The first non-zero Neumann p-fractional eigenvalue |
title_fullStr |
The first non-zero Neumann p-fractional eigenvalue |
title_full_unstemmed |
The first non-zero Neumann p-fractional eigenvalue |
title_sort |
The first non-zero Neumann p-fractional eigenvalue |
dc.creator.none.fl_str_mv |
del Pezzo, Leandro Martin Salort, Ariel Martin |
author |
del Pezzo, Leandro Martin |
author_facet |
del Pezzo, Leandro Martin Salort, Ariel Martin |
author_role |
author |
author2 |
Salort, Ariel Martin |
author2_role |
author |
dc.subject.none.fl_str_mv |
Hölder Infinity Laplacian Neumann Eigenvalues Nonlinear Fractional Laplacian |
topic |
Hölder Infinity Laplacian Neumann Eigenvalues Nonlinear Fractional Laplacian |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this work we study the asymptotic behavior of the first non-zero Neumann p-fractional eigenvalue λ1(s,p) as s → 1- and as p → ∞. We show that there exists a constant K such that K(1-s)λ1(s,p) goes to the first non-zero Neumann eigenvalue of the p-Laplacian. While in the limit case p → ∞, we prove that λ-(1,s)1/p goes to an eigenvalue of the Hölder ∞-Laplacian. Fil: del Pezzo, Leandro Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Salort, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina |
description |
In this work we study the asymptotic behavior of the first non-zero Neumann p-fractional eigenvalue λ1(s,p) as s → 1- and as p → ∞. We show that there exists a constant K such that K(1-s)λ1(s,p) goes to the first non-zero Neumann eigenvalue of the p-Laplacian. While in the limit case p → ∞, we prove that λ-(1,s)1/p goes to an eigenvalue of the Hölder ∞-Laplacian. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/37620 del Pezzo, Leandro Martin; Salort, Ariel Martin; The first non-zero Neumann p-fractional eigenvalue; Pergamon-Elsevier Science Ltd; Journal Of Nonlinear Analysis; 118; 1-2015; 130-143 0362-546X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/37620 |
identifier_str_mv |
del Pezzo, Leandro Martin; Salort, Ariel Martin; The first non-zero Neumann p-fractional eigenvalue; Pergamon-Elsevier Science Ltd; Journal Of Nonlinear Analysis; 118; 1-2015; 130-143 0362-546X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.na.2015.02.006 info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0362546X15000462 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1409.0840 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269170421465088 |
score |
13.13397 |