The first non-zero Neumann p-fractional eigenvalue

Autores
del Pezzo, Leandro Martin; Salort, Ariel Martin
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this work we study the asymptotic behavior of the first non-zero Neumann p-fractional eigenvalue λ1(s,p) as s → 1- and as p → ∞. We show that there exists a constant K such that K(1-s)λ1(s,p) goes to the first non-zero Neumann eigenvalue of the p-Laplacian. While in the limit case p → ∞, we prove that λ-(1,s)1/p goes to an eigenvalue of the Hölder ∞-Laplacian.
Fil: del Pezzo, Leandro Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Salort, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
Materia
Hölder Infinity Laplacian
Neumann Eigenvalues
Nonlinear Fractional Laplacian
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/37620

id CONICETDig_eebad738eb5cc81bc2c7026e5f44b632
oai_identifier_str oai:ri.conicet.gov.ar:11336/37620
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling The first non-zero Neumann p-fractional eigenvaluedel Pezzo, Leandro MartinSalort, Ariel MartinHölder Infinity LaplacianNeumann EigenvaluesNonlinear Fractional Laplacianhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this work we study the asymptotic behavior of the first non-zero Neumann p-fractional eigenvalue λ1(s,p) as s → 1- and as p → ∞. We show that there exists a constant K such that K(1-s)λ1(s,p) goes to the first non-zero Neumann eigenvalue of the p-Laplacian. While in the limit case p → ∞, we prove that λ-(1,s)1/p goes to an eigenvalue of the Hölder ∞-Laplacian.Fil: del Pezzo, Leandro Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Salort, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; ArgentinaPergamon-Elsevier Science Ltd2015-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/37620del Pezzo, Leandro Martin; Salort, Ariel Martin; The first non-zero Neumann p-fractional eigenvalue; Pergamon-Elsevier Science Ltd; Journal Of Nonlinear Analysis; 118; 1-2015; 130-1430362-546XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.na.2015.02.006info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0362546X15000462info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1409.0840info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:52:36Zoai:ri.conicet.gov.ar:11336/37620instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:52:36.836CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv The first non-zero Neumann p-fractional eigenvalue
title The first non-zero Neumann p-fractional eigenvalue
spellingShingle The first non-zero Neumann p-fractional eigenvalue
del Pezzo, Leandro Martin
Hölder Infinity Laplacian
Neumann Eigenvalues
Nonlinear Fractional Laplacian
title_short The first non-zero Neumann p-fractional eigenvalue
title_full The first non-zero Neumann p-fractional eigenvalue
title_fullStr The first non-zero Neumann p-fractional eigenvalue
title_full_unstemmed The first non-zero Neumann p-fractional eigenvalue
title_sort The first non-zero Neumann p-fractional eigenvalue
dc.creator.none.fl_str_mv del Pezzo, Leandro Martin
Salort, Ariel Martin
author del Pezzo, Leandro Martin
author_facet del Pezzo, Leandro Martin
Salort, Ariel Martin
author_role author
author2 Salort, Ariel Martin
author2_role author
dc.subject.none.fl_str_mv Hölder Infinity Laplacian
Neumann Eigenvalues
Nonlinear Fractional Laplacian
topic Hölder Infinity Laplacian
Neumann Eigenvalues
Nonlinear Fractional Laplacian
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this work we study the asymptotic behavior of the first non-zero Neumann p-fractional eigenvalue λ1(s,p) as s → 1- and as p → ∞. We show that there exists a constant K such that K(1-s)λ1(s,p) goes to the first non-zero Neumann eigenvalue of the p-Laplacian. While in the limit case p → ∞, we prove that λ-(1,s)1/p goes to an eigenvalue of the Hölder ∞-Laplacian.
Fil: del Pezzo, Leandro Martin. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Salort, Ariel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas ; Argentina
description In this work we study the asymptotic behavior of the first non-zero Neumann p-fractional eigenvalue λ1(s,p) as s → 1- and as p → ∞. We show that there exists a constant K such that K(1-s)λ1(s,p) goes to the first non-zero Neumann eigenvalue of the p-Laplacian. While in the limit case p → ∞, we prove that λ-(1,s)1/p goes to an eigenvalue of the Hölder ∞-Laplacian.
publishDate 2015
dc.date.none.fl_str_mv 2015-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/37620
del Pezzo, Leandro Martin; Salort, Ariel Martin; The first non-zero Neumann p-fractional eigenvalue; Pergamon-Elsevier Science Ltd; Journal Of Nonlinear Analysis; 118; 1-2015; 130-143
0362-546X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/37620
identifier_str_mv del Pezzo, Leandro Martin; Salort, Ariel Martin; The first non-zero Neumann p-fractional eigenvalue; Pergamon-Elsevier Science Ltd; Journal Of Nonlinear Analysis; 118; 1-2015; 130-143
0362-546X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.na.2015.02.006
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0362546X15000462
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1409.0840
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
publisher.none.fl_str_mv Pergamon-Elsevier Science Ltd
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269170421465088
score 13.13397