Indecomposable solutions of the Yang-Baxter equation with permutation group of sizes pq and p 2 q

Autores
Ramírez, Santiago Agustín
Año de publicación
2023
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In this paper we study the problem of the classification of indecomposable solutions of the Yang-Baxter equation. Using a scheme proposed by Bachiller, Cedó, and Jespers, and recent advances in the classification of braces we classify all indecomposable solutions with some particular permutation groups. We do this for all groups of size pq, all abelian groups of size p2q and all dihedral groups of size p2q.
Fil: Ramírez, Santiago Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Materia
Decomposable solution
Set-theoretical involutive solution
Yang-Baxter equation
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/263643

id CONICETDig_b5ff4ab5d27d9dedc97cf4aa40884258
oai_identifier_str oai:ri.conicet.gov.ar:11336/263643
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Indecomposable solutions of the Yang-Baxter equation with permutation group of sizes pq and p 2 qRamírez, Santiago AgustínDecomposable solutionSet-theoretical involutive solutionYang-Baxter equationhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we study the problem of the classification of indecomposable solutions of the Yang-Baxter equation. Using a scheme proposed by Bachiller, Cedó, and Jespers, and recent advances in the classification of braces we classify all indecomposable solutions with some particular permutation groups. We do this for all groups of size pq, all abelian groups of size p2q and all dihedral groups of size p2q.Fil: Ramírez, Santiago Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaTaylor & Francis2023-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/263643Ramírez, Santiago Agustín; Indecomposable solutions of the Yang-Baxter equation with permutation group of sizes pq and p 2 q; Taylor & Francis; Communications In Algebra; 51; 10; 4-2023; 4185-41940092-7872CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/00927872.2023.2200827info:eu-repo/semantics/altIdentifier/doi/10.1080/00927872.2023.2200827info:eu-repo/semantics/altIdentifier/arxiv/http://arxiv.org/abs/2208.06741v1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:08:05Zoai:ri.conicet.gov.ar:11336/263643instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:08:06.04CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Indecomposable solutions of the Yang-Baxter equation with permutation group of sizes pq and p 2 q
title Indecomposable solutions of the Yang-Baxter equation with permutation group of sizes pq and p 2 q
spellingShingle Indecomposable solutions of the Yang-Baxter equation with permutation group of sizes pq and p 2 q
Ramírez, Santiago Agustín
Decomposable solution
Set-theoretical involutive solution
Yang-Baxter equation
title_short Indecomposable solutions of the Yang-Baxter equation with permutation group of sizes pq and p 2 q
title_full Indecomposable solutions of the Yang-Baxter equation with permutation group of sizes pq and p 2 q
title_fullStr Indecomposable solutions of the Yang-Baxter equation with permutation group of sizes pq and p 2 q
title_full_unstemmed Indecomposable solutions of the Yang-Baxter equation with permutation group of sizes pq and p 2 q
title_sort Indecomposable solutions of the Yang-Baxter equation with permutation group of sizes pq and p 2 q
dc.creator.none.fl_str_mv Ramírez, Santiago Agustín
author Ramírez, Santiago Agustín
author_facet Ramírez, Santiago Agustín
author_role author
dc.subject.none.fl_str_mv Decomposable solution
Set-theoretical involutive solution
Yang-Baxter equation
topic Decomposable solution
Set-theoretical involutive solution
Yang-Baxter equation
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In this paper we study the problem of the classification of indecomposable solutions of the Yang-Baxter equation. Using a scheme proposed by Bachiller, Cedó, and Jespers, and recent advances in the classification of braces we classify all indecomposable solutions with some particular permutation groups. We do this for all groups of size pq, all abelian groups of size p2q and all dihedral groups of size p2q.
Fil: Ramírez, Santiago Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
description In this paper we study the problem of the classification of indecomposable solutions of the Yang-Baxter equation. Using a scheme proposed by Bachiller, Cedó, and Jespers, and recent advances in the classification of braces we classify all indecomposable solutions with some particular permutation groups. We do this for all groups of size pq, all abelian groups of size p2q and all dihedral groups of size p2q.
publishDate 2023
dc.date.none.fl_str_mv 2023-04
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/263643
Ramírez, Santiago Agustín; Indecomposable solutions of the Yang-Baxter equation with permutation group of sizes pq and p 2 q; Taylor & Francis; Communications In Algebra; 51; 10; 4-2023; 4185-4194
0092-7872
CONICET Digital
CONICET
url http://hdl.handle.net/11336/263643
identifier_str_mv Ramírez, Santiago Agustín; Indecomposable solutions of the Yang-Baxter equation with permutation group of sizes pq and p 2 q; Taylor & Francis; Communications In Algebra; 51; 10; 4-2023; 4185-4194
0092-7872
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/00927872.2023.2200827
info:eu-repo/semantics/altIdentifier/doi/10.1080/00927872.2023.2200827
info:eu-repo/semantics/altIdentifier/arxiv/http://arxiv.org/abs/2208.06741v1
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Taylor & Francis
publisher.none.fl_str_mv Taylor & Francis
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980376619778048
score 12.993085