Indecomposable solutions of the Yang-Baxter equation with permutation group of sizes pq and p 2 q
- Autores
- Ramírez, Santiago Agustín
- Año de publicación
- 2023
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we study the problem of the classification of indecomposable solutions of the Yang-Baxter equation. Using a scheme proposed by Bachiller, Cedó, and Jespers, and recent advances in the classification of braces we classify all indecomposable solutions with some particular permutation groups. We do this for all groups of size pq, all abelian groups of size p2q and all dihedral groups of size p2q.
Fil: Ramírez, Santiago Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina - Materia
-
Decomposable solution
Set-theoretical involutive solution
Yang-Baxter equation - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/263643
Ver los metadatos del registro completo
id |
CONICETDig_b5ff4ab5d27d9dedc97cf4aa40884258 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/263643 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Indecomposable solutions of the Yang-Baxter equation with permutation group of sizes pq and p 2 qRamírez, Santiago AgustínDecomposable solutionSet-theoretical involutive solutionYang-Baxter equationhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we study the problem of the classification of indecomposable solutions of the Yang-Baxter equation. Using a scheme proposed by Bachiller, Cedó, and Jespers, and recent advances in the classification of braces we classify all indecomposable solutions with some particular permutation groups. We do this for all groups of size pq, all abelian groups of size p2q and all dihedral groups of size p2q.Fil: Ramírez, Santiago Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaTaylor & Francis2023-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/263643Ramírez, Santiago Agustín; Indecomposable solutions of the Yang-Baxter equation with permutation group of sizes pq and p 2 q; Taylor & Francis; Communications In Algebra; 51; 10; 4-2023; 4185-41940092-7872CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/00927872.2023.2200827info:eu-repo/semantics/altIdentifier/doi/10.1080/00927872.2023.2200827info:eu-repo/semantics/altIdentifier/arxiv/http://arxiv.org/abs/2208.06741v1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:08:05Zoai:ri.conicet.gov.ar:11336/263643instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:08:06.04CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Indecomposable solutions of the Yang-Baxter equation with permutation group of sizes pq and p 2 q |
title |
Indecomposable solutions of the Yang-Baxter equation with permutation group of sizes pq and p 2 q |
spellingShingle |
Indecomposable solutions of the Yang-Baxter equation with permutation group of sizes pq and p 2 q Ramírez, Santiago Agustín Decomposable solution Set-theoretical involutive solution Yang-Baxter equation |
title_short |
Indecomposable solutions of the Yang-Baxter equation with permutation group of sizes pq and p 2 q |
title_full |
Indecomposable solutions of the Yang-Baxter equation with permutation group of sizes pq and p 2 q |
title_fullStr |
Indecomposable solutions of the Yang-Baxter equation with permutation group of sizes pq and p 2 q |
title_full_unstemmed |
Indecomposable solutions of the Yang-Baxter equation with permutation group of sizes pq and p 2 q |
title_sort |
Indecomposable solutions of the Yang-Baxter equation with permutation group of sizes pq and p 2 q |
dc.creator.none.fl_str_mv |
Ramírez, Santiago Agustín |
author |
Ramírez, Santiago Agustín |
author_facet |
Ramírez, Santiago Agustín |
author_role |
author |
dc.subject.none.fl_str_mv |
Decomposable solution Set-theoretical involutive solution Yang-Baxter equation |
topic |
Decomposable solution Set-theoretical involutive solution Yang-Baxter equation |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we study the problem of the classification of indecomposable solutions of the Yang-Baxter equation. Using a scheme proposed by Bachiller, Cedó, and Jespers, and recent advances in the classification of braces we classify all indecomposable solutions with some particular permutation groups. We do this for all groups of size pq, all abelian groups of size p2q and all dihedral groups of size p2q. Fil: Ramírez, Santiago Agustín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina |
description |
In this paper we study the problem of the classification of indecomposable solutions of the Yang-Baxter equation. Using a scheme proposed by Bachiller, Cedó, and Jespers, and recent advances in the classification of braces we classify all indecomposable solutions with some particular permutation groups. We do this for all groups of size pq, all abelian groups of size p2q and all dihedral groups of size p2q. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/263643 Ramírez, Santiago Agustín; Indecomposable solutions of the Yang-Baxter equation with permutation group of sizes pq and p 2 q; Taylor & Francis; Communications In Algebra; 51; 10; 4-2023; 4185-4194 0092-7872 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/263643 |
identifier_str_mv |
Ramírez, Santiago Agustín; Indecomposable solutions of the Yang-Baxter equation with permutation group of sizes pq and p 2 q; Taylor & Francis; Communications In Algebra; 51; 10; 4-2023; 4185-4194 0092-7872 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.tandfonline.com/doi/full/10.1080/00927872.2023.2200827 info:eu-repo/semantics/altIdentifier/doi/10.1080/00927872.2023.2200827 info:eu-repo/semantics/altIdentifier/arxiv/http://arxiv.org/abs/2208.06741v1 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Taylor & Francis |
publisher.none.fl_str_mv |
Taylor & Francis |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980376619778048 |
score |
12.993085 |