Near Field Asymptotic Behavior for the Porous Medium Equation on the Half-Line

Autores
Cortázar, Carmen; Quirós, Fernando; Wolanski, Noemi Irene
Año de publicación
2017
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Kamin and Vázquez [11] proved in 1991 that solutions to the Cauchy-Dirichlet problem for the porous medium equation ut = (um)xx, m > 1, on the half-line with zero boundary data and nonnegative compactly supported integrable initial data behave for large times as a dipole-type solution to the equation having the same first moment as the initial data, with an error which is o(t-1/m). However, on sets of the form 0 < x < g(t), with g(t) = o(t1/(2m)) as t →, in the so-called near field, a scale which includes the particular case of compact sets, the dipole solution is o( t-1/m), and their result gives neither the right rate of decay of the solution nor a nontrivial asymptotic profile. In this paper, we will improve the estimate for the error, showing that it is o(t-(2m+1)/(2m2) (1+x)1/m). This allows in particular to obtain a nontrivial asymptotic profile in the near field limit, which is a multiple of x1/m, thus improving in this scale the results of Kamin and Vázquez.
Fil: Cortázar, Carmen. Pontificia Universidad Católica de Chile; Chile
Fil: Quirós, Fernando. Universidad Autonoma de Madrid. Facultad de Ciencias. Departamento de Matemática; España
Fil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Materia
ASYMPTOTIC BEHAVIOR
MATCHED ASYMPTOTICS
POROUS MEDIUM EQUATION ON THE HALF-LINE
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/182625

id CONICETDig_aa1a19cddc850dd7c2a190f1faf660e9
oai_identifier_str oai:ri.conicet.gov.ar:11336/182625
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Near Field Asymptotic Behavior for the Porous Medium Equation on the Half-LineCortázar, CarmenQuirós, FernandoWolanski, Noemi IreneASYMPTOTIC BEHAVIORMATCHED ASYMPTOTICSPOROUS MEDIUM EQUATION ON THE HALF-LINEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Kamin and Vázquez [11] proved in 1991 that solutions to the Cauchy-Dirichlet problem for the porous medium equation ut = (um)xx, m > 1, on the half-line with zero boundary data and nonnegative compactly supported integrable initial data behave for large times as a dipole-type solution to the equation having the same first moment as the initial data, with an error which is o(t-1/m). However, on sets of the form 0 < x < g(t), with g(t) = o(t1/(2m)) as t →, in the so-called near field, a scale which includes the particular case of compact sets, the dipole solution is o( t-1/m), and their result gives neither the right rate of decay of the solution nor a nontrivial asymptotic profile. In this paper, we will improve the estimate for the error, showing that it is o(t-(2m+1)/(2m2) (1+x)1/m). This allows in particular to obtain a nontrivial asymptotic profile in the near field limit, which is a multiple of x1/m, thus improving in this scale the results of Kamin and Vázquez.Fil: Cortázar, Carmen. Pontificia Universidad Católica de Chile; ChileFil: Quirós, Fernando. Universidad Autonoma de Madrid. Facultad de Ciencias. Departamento de Matemática; EspañaFil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaDe Gruyter2017-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/182625Cortázar, Carmen; Quirós, Fernando; Wolanski, Noemi Irene; Near Field Asymptotic Behavior for the Porous Medium Equation on the Half-Line; De Gruyter; Advanced Nonlinear Studies; 17; 2; 5-2017; 245-2541536-13652169-0375CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/document/doi/10.1515/ans-2017-0006/htmlinfo:eu-repo/semantics/altIdentifier/doi/10.1515/ans-2017-0006info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:19:10Zoai:ri.conicet.gov.ar:11336/182625instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:19:10.425CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Near Field Asymptotic Behavior for the Porous Medium Equation on the Half-Line
title Near Field Asymptotic Behavior for the Porous Medium Equation on the Half-Line
spellingShingle Near Field Asymptotic Behavior for the Porous Medium Equation on the Half-Line
Cortázar, Carmen
ASYMPTOTIC BEHAVIOR
MATCHED ASYMPTOTICS
POROUS MEDIUM EQUATION ON THE HALF-LINE
title_short Near Field Asymptotic Behavior for the Porous Medium Equation on the Half-Line
title_full Near Field Asymptotic Behavior for the Porous Medium Equation on the Half-Line
title_fullStr Near Field Asymptotic Behavior for the Porous Medium Equation on the Half-Line
title_full_unstemmed Near Field Asymptotic Behavior for the Porous Medium Equation on the Half-Line
title_sort Near Field Asymptotic Behavior for the Porous Medium Equation on the Half-Line
dc.creator.none.fl_str_mv Cortázar, Carmen
Quirós, Fernando
Wolanski, Noemi Irene
author Cortázar, Carmen
author_facet Cortázar, Carmen
Quirós, Fernando
Wolanski, Noemi Irene
author_role author
author2 Quirós, Fernando
Wolanski, Noemi Irene
author2_role author
author
dc.subject.none.fl_str_mv ASYMPTOTIC BEHAVIOR
MATCHED ASYMPTOTICS
POROUS MEDIUM EQUATION ON THE HALF-LINE
topic ASYMPTOTIC BEHAVIOR
MATCHED ASYMPTOTICS
POROUS MEDIUM EQUATION ON THE HALF-LINE
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Kamin and Vázquez [11] proved in 1991 that solutions to the Cauchy-Dirichlet problem for the porous medium equation ut = (um)xx, m > 1, on the half-line with zero boundary data and nonnegative compactly supported integrable initial data behave for large times as a dipole-type solution to the equation having the same first moment as the initial data, with an error which is o(t-1/m). However, on sets of the form 0 < x < g(t), with g(t) = o(t1/(2m)) as t →, in the so-called near field, a scale which includes the particular case of compact sets, the dipole solution is o( t-1/m), and their result gives neither the right rate of decay of the solution nor a nontrivial asymptotic profile. In this paper, we will improve the estimate for the error, showing that it is o(t-(2m+1)/(2m2) (1+x)1/m). This allows in particular to obtain a nontrivial asymptotic profile in the near field limit, which is a multiple of x1/m, thus improving in this scale the results of Kamin and Vázquez.
Fil: Cortázar, Carmen. Pontificia Universidad Católica de Chile; Chile
Fil: Quirós, Fernando. Universidad Autonoma de Madrid. Facultad de Ciencias. Departamento de Matemática; España
Fil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
description Kamin and Vázquez [11] proved in 1991 that solutions to the Cauchy-Dirichlet problem for the porous medium equation ut = (um)xx, m > 1, on the half-line with zero boundary data and nonnegative compactly supported integrable initial data behave for large times as a dipole-type solution to the equation having the same first moment as the initial data, with an error which is o(t-1/m). However, on sets of the form 0 < x < g(t), with g(t) = o(t1/(2m)) as t →, in the so-called near field, a scale which includes the particular case of compact sets, the dipole solution is o( t-1/m), and their result gives neither the right rate of decay of the solution nor a nontrivial asymptotic profile. In this paper, we will improve the estimate for the error, showing that it is o(t-(2m+1)/(2m2) (1+x)1/m). This allows in particular to obtain a nontrivial asymptotic profile in the near field limit, which is a multiple of x1/m, thus improving in this scale the results of Kamin and Vázquez.
publishDate 2017
dc.date.none.fl_str_mv 2017-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/182625
Cortázar, Carmen; Quirós, Fernando; Wolanski, Noemi Irene; Near Field Asymptotic Behavior for the Porous Medium Equation on the Half-Line; De Gruyter; Advanced Nonlinear Studies; 17; 2; 5-2017; 245-254
1536-1365
2169-0375
CONICET Digital
CONICET
url http://hdl.handle.net/11336/182625
identifier_str_mv Cortázar, Carmen; Quirós, Fernando; Wolanski, Noemi Irene; Near Field Asymptotic Behavior for the Porous Medium Equation on the Half-Line; De Gruyter; Advanced Nonlinear Studies; 17; 2; 5-2017; 245-254
1536-1365
2169-0375
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/document/doi/10.1515/ans-2017-0006/html
info:eu-repo/semantics/altIdentifier/doi/10.1515/ans-2017-0006
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv De Gruyter
publisher.none.fl_str_mv De Gruyter
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842981043620020224
score 12.48226