Near Field Asymptotic Behavior for the Porous Medium Equation on the Half-Line
- Autores
- Cortázar, Carmen; Quirós, Fernando; Wolanski, Noemi Irene
- Año de publicación
- 2017
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Kamin and Vázquez [11] proved in 1991 that solutions to the Cauchy-Dirichlet problem for the porous medium equation ut = (um)xx, m > 1, on the half-line with zero boundary data and nonnegative compactly supported integrable initial data behave for large times as a dipole-type solution to the equation having the same first moment as the initial data, with an error which is o(t-1/m). However, on sets of the form 0 < x < g(t), with g(t) = o(t1/(2m)) as t →, in the so-called near field, a scale which includes the particular case of compact sets, the dipole solution is o( t-1/m), and their result gives neither the right rate of decay of the solution nor a nontrivial asymptotic profile. In this paper, we will improve the estimate for the error, showing that it is o(t-(2m+1)/(2m2) (1+x)1/m). This allows in particular to obtain a nontrivial asymptotic profile in the near field limit, which is a multiple of x1/m, thus improving in this scale the results of Kamin and Vázquez.
Fil: Cortázar, Carmen. Pontificia Universidad Católica de Chile; Chile
Fil: Quirós, Fernando. Universidad Autonoma de Madrid. Facultad de Ciencias. Departamento de Matemática; España
Fil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina - Materia
-
ASYMPTOTIC BEHAVIOR
MATCHED ASYMPTOTICS
POROUS MEDIUM EQUATION ON THE HALF-LINE - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/182625
Ver los metadatos del registro completo
id |
CONICETDig_aa1a19cddc850dd7c2a190f1faf660e9 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/182625 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Near Field Asymptotic Behavior for the Porous Medium Equation on the Half-LineCortázar, CarmenQuirós, FernandoWolanski, Noemi IreneASYMPTOTIC BEHAVIORMATCHED ASYMPTOTICSPOROUS MEDIUM EQUATION ON THE HALF-LINEhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Kamin and Vázquez [11] proved in 1991 that solutions to the Cauchy-Dirichlet problem for the porous medium equation ut = (um)xx, m > 1, on the half-line with zero boundary data and nonnegative compactly supported integrable initial data behave for large times as a dipole-type solution to the equation having the same first moment as the initial data, with an error which is o(t-1/m). However, on sets of the form 0 < x < g(t), with g(t) = o(t1/(2m)) as t →, in the so-called near field, a scale which includes the particular case of compact sets, the dipole solution is o( t-1/m), and their result gives neither the right rate of decay of the solution nor a nontrivial asymptotic profile. In this paper, we will improve the estimate for the error, showing that it is o(t-(2m+1)/(2m2) (1+x)1/m). This allows in particular to obtain a nontrivial asymptotic profile in the near field limit, which is a multiple of x1/m, thus improving in this scale the results of Kamin and Vázquez.Fil: Cortázar, Carmen. Pontificia Universidad Católica de Chile; ChileFil: Quirós, Fernando. Universidad Autonoma de Madrid. Facultad de Ciencias. Departamento de Matemática; EspañaFil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaDe Gruyter2017-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/182625Cortázar, Carmen; Quirós, Fernando; Wolanski, Noemi Irene; Near Field Asymptotic Behavior for the Porous Medium Equation on the Half-Line; De Gruyter; Advanced Nonlinear Studies; 17; 2; 5-2017; 245-2541536-13652169-0375CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/document/doi/10.1515/ans-2017-0006/htmlinfo:eu-repo/semantics/altIdentifier/doi/10.1515/ans-2017-0006info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:19:10Zoai:ri.conicet.gov.ar:11336/182625instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:19:10.425CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Near Field Asymptotic Behavior for the Porous Medium Equation on the Half-Line |
title |
Near Field Asymptotic Behavior for the Porous Medium Equation on the Half-Line |
spellingShingle |
Near Field Asymptotic Behavior for the Porous Medium Equation on the Half-Line Cortázar, Carmen ASYMPTOTIC BEHAVIOR MATCHED ASYMPTOTICS POROUS MEDIUM EQUATION ON THE HALF-LINE |
title_short |
Near Field Asymptotic Behavior for the Porous Medium Equation on the Half-Line |
title_full |
Near Field Asymptotic Behavior for the Porous Medium Equation on the Half-Line |
title_fullStr |
Near Field Asymptotic Behavior for the Porous Medium Equation on the Half-Line |
title_full_unstemmed |
Near Field Asymptotic Behavior for the Porous Medium Equation on the Half-Line |
title_sort |
Near Field Asymptotic Behavior for the Porous Medium Equation on the Half-Line |
dc.creator.none.fl_str_mv |
Cortázar, Carmen Quirós, Fernando Wolanski, Noemi Irene |
author |
Cortázar, Carmen |
author_facet |
Cortázar, Carmen Quirós, Fernando Wolanski, Noemi Irene |
author_role |
author |
author2 |
Quirós, Fernando Wolanski, Noemi Irene |
author2_role |
author author |
dc.subject.none.fl_str_mv |
ASYMPTOTIC BEHAVIOR MATCHED ASYMPTOTICS POROUS MEDIUM EQUATION ON THE HALF-LINE |
topic |
ASYMPTOTIC BEHAVIOR MATCHED ASYMPTOTICS POROUS MEDIUM EQUATION ON THE HALF-LINE |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Kamin and Vázquez [11] proved in 1991 that solutions to the Cauchy-Dirichlet problem for the porous medium equation ut = (um)xx, m > 1, on the half-line with zero boundary data and nonnegative compactly supported integrable initial data behave for large times as a dipole-type solution to the equation having the same first moment as the initial data, with an error which is o(t-1/m). However, on sets of the form 0 < x < g(t), with g(t) = o(t1/(2m)) as t →, in the so-called near field, a scale which includes the particular case of compact sets, the dipole solution is o( t-1/m), and their result gives neither the right rate of decay of the solution nor a nontrivial asymptotic profile. In this paper, we will improve the estimate for the error, showing that it is o(t-(2m+1)/(2m2) (1+x)1/m). This allows in particular to obtain a nontrivial asymptotic profile in the near field limit, which is a multiple of x1/m, thus improving in this scale the results of Kamin and Vázquez. Fil: Cortázar, Carmen. Pontificia Universidad Católica de Chile; Chile Fil: Quirós, Fernando. Universidad Autonoma de Madrid. Facultad de Ciencias. Departamento de Matemática; España Fil: Wolanski, Noemi Irene. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina |
description |
Kamin and Vázquez [11] proved in 1991 that solutions to the Cauchy-Dirichlet problem for the porous medium equation ut = (um)xx, m > 1, on the half-line with zero boundary data and nonnegative compactly supported integrable initial data behave for large times as a dipole-type solution to the equation having the same first moment as the initial data, with an error which is o(t-1/m). However, on sets of the form 0 < x < g(t), with g(t) = o(t1/(2m)) as t →, in the so-called near field, a scale which includes the particular case of compact sets, the dipole solution is o( t-1/m), and their result gives neither the right rate of decay of the solution nor a nontrivial asymptotic profile. In this paper, we will improve the estimate for the error, showing that it is o(t-(2m+1)/(2m2) (1+x)1/m). This allows in particular to obtain a nontrivial asymptotic profile in the near field limit, which is a multiple of x1/m, thus improving in this scale the results of Kamin and Vázquez. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/182625 Cortázar, Carmen; Quirós, Fernando; Wolanski, Noemi Irene; Near Field Asymptotic Behavior for the Porous Medium Equation on the Half-Line; De Gruyter; Advanced Nonlinear Studies; 17; 2; 5-2017; 245-254 1536-1365 2169-0375 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/182625 |
identifier_str_mv |
Cortázar, Carmen; Quirós, Fernando; Wolanski, Noemi Irene; Near Field Asymptotic Behavior for the Porous Medium Equation on the Half-Line; De Gruyter; Advanced Nonlinear Studies; 17; 2; 5-2017; 245-254 1536-1365 2169-0375 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/document/doi/10.1515/ans-2017-0006/html info:eu-repo/semantics/altIdentifier/doi/10.1515/ans-2017-0006 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
De Gruyter |
publisher.none.fl_str_mv |
De Gruyter |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981043620020224 |
score |
12.48226 |