Near-field asymptotics for the porous medium equation in exterior domains: The critical two-dimensional case
- Autores
- Cortázar, Carmen; Quirós, Fernando; Wolanski, Noemi Irene
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider the porous medium equation in an exterior two-dimensional domain that excludes a hole, with zero Dirichlet data on its boundary. Gilding and Goncerzewicz proved in 2007 that in the far-field scale, which is the adequate one to describe the movement of the free boundary, solutions to this problem with integrable and compactly supported initial data behave as an instantaneous point-source solution for the equation with a variable mass that decays to 0 in a precise way, determined by the initial data and the hole. In this paper, starting from their result in the far field, we study the large time behavior in the near field, in scales that evolve more slowly than the free boundary. In this way we get, in particular, the final profile and decay rate on compact sets. Spatial dimension two is critical for this problem, and involves logarithmic corrections.
Fil: Cortázar, Carmen. Pontificia Universidad Católica de Chile; Chile
Fil: Quirós, Fernando. Universidad Autonoma de Madrid; España
Fil: Wolanski, Noemi Irene. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
Porous medium equation
Asymptotic behavior,
Exterior domain
Matched asymptotics - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/89716
Ver los metadatos del registro completo
| id |
CONICETDig_8977abd31ff29c1b7101401855815a43 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/89716 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Near-field asymptotics for the porous medium equation in exterior domains: The critical two-dimensional caseCortázar, CarmenQuirós, FernandoWolanski, Noemi IrenePorous medium equationAsymptotic behavior,Exterior domainMatched asymptoticshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider the porous medium equation in an exterior two-dimensional domain that excludes a hole, with zero Dirichlet data on its boundary. Gilding and Goncerzewicz proved in 2007 that in the far-field scale, which is the adequate one to describe the movement of the free boundary, solutions to this problem with integrable and compactly supported initial data behave as an instantaneous point-source solution for the equation with a variable mass that decays to 0 in a precise way, determined by the initial data and the hole. In this paper, starting from their result in the far field, we study the large time behavior in the near field, in scales that evolve more slowly than the free boundary. In this way we get, in particular, the final profile and decay rate on compact sets. Spatial dimension two is critical for this problem, and involves logarithmic corrections.Fil: Cortázar, Carmen. Pontificia Universidad Católica de Chile; ChileFil: Quirós, Fernando. Universidad Autonoma de Madrid; EspañaFil: Wolanski, Noemi Irene. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaSociety for Industrial and Applied Mathematics2018-09info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/89716Cortázar, Carmen; Quirós, Fernando; Wolanski, Noemi Irene; Near-field asymptotics for the porous medium equation in exterior domains: The critical two-dimensional case; Society for Industrial and Applied Mathematics; Siam Journal On Mathematical Analysis; 50; 3; 9-2018; 2664-26800036-1410CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/pdf/1610.04772.pdfinfo:eu-repo/semantics/altIdentifier/url/https://epubs.siam.org/doi/10.1137/16M110191Xinfo:eu-repo/semantics/altIdentifier/doi/10.1137/16M110191Xinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T12:09:43Zoai:ri.conicet.gov.ar:11336/89716instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 12:09:44.228CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Near-field asymptotics for the porous medium equation in exterior domains: The critical two-dimensional case |
| title |
Near-field asymptotics for the porous medium equation in exterior domains: The critical two-dimensional case |
| spellingShingle |
Near-field asymptotics for the porous medium equation in exterior domains: The critical two-dimensional case Cortázar, Carmen Porous medium equation Asymptotic behavior, Exterior domain Matched asymptotics |
| title_short |
Near-field asymptotics for the porous medium equation in exterior domains: The critical two-dimensional case |
| title_full |
Near-field asymptotics for the porous medium equation in exterior domains: The critical two-dimensional case |
| title_fullStr |
Near-field asymptotics for the porous medium equation in exterior domains: The critical two-dimensional case |
| title_full_unstemmed |
Near-field asymptotics for the porous medium equation in exterior domains: The critical two-dimensional case |
| title_sort |
Near-field asymptotics for the porous medium equation in exterior domains: The critical two-dimensional case |
| dc.creator.none.fl_str_mv |
Cortázar, Carmen Quirós, Fernando Wolanski, Noemi Irene |
| author |
Cortázar, Carmen |
| author_facet |
Cortázar, Carmen Quirós, Fernando Wolanski, Noemi Irene |
| author_role |
author |
| author2 |
Quirós, Fernando Wolanski, Noemi Irene |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
Porous medium equation Asymptotic behavior, Exterior domain Matched asymptotics |
| topic |
Porous medium equation Asymptotic behavior, Exterior domain Matched asymptotics |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We consider the porous medium equation in an exterior two-dimensional domain that excludes a hole, with zero Dirichlet data on its boundary. Gilding and Goncerzewicz proved in 2007 that in the far-field scale, which is the adequate one to describe the movement of the free boundary, solutions to this problem with integrable and compactly supported initial data behave as an instantaneous point-source solution for the equation with a variable mass that decays to 0 in a precise way, determined by the initial data and the hole. In this paper, starting from their result in the far field, we study the large time behavior in the near field, in scales that evolve more slowly than the free boundary. In this way we get, in particular, the final profile and decay rate on compact sets. Spatial dimension two is critical for this problem, and involves logarithmic corrections. Fil: Cortázar, Carmen. Pontificia Universidad Católica de Chile; Chile Fil: Quirós, Fernando. Universidad Autonoma de Madrid; España Fil: Wolanski, Noemi Irene. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
| description |
We consider the porous medium equation in an exterior two-dimensional domain that excludes a hole, with zero Dirichlet data on its boundary. Gilding and Goncerzewicz proved in 2007 that in the far-field scale, which is the adequate one to describe the movement of the free boundary, solutions to this problem with integrable and compactly supported initial data behave as an instantaneous point-source solution for the equation with a variable mass that decays to 0 in a precise way, determined by the initial data and the hole. In this paper, starting from their result in the far field, we study the large time behavior in the near field, in scales that evolve more slowly than the free boundary. In this way we get, in particular, the final profile and decay rate on compact sets. Spatial dimension two is critical for this problem, and involves logarithmic corrections. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-09 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/89716 Cortázar, Carmen; Quirós, Fernando; Wolanski, Noemi Irene; Near-field asymptotics for the porous medium equation in exterior domains: The critical two-dimensional case; Society for Industrial and Applied Mathematics; Siam Journal On Mathematical Analysis; 50; 3; 9-2018; 2664-2680 0036-1410 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/89716 |
| identifier_str_mv |
Cortázar, Carmen; Quirós, Fernando; Wolanski, Noemi Irene; Near-field asymptotics for the porous medium equation in exterior domains: The critical two-dimensional case; Society for Industrial and Applied Mathematics; Siam Journal On Mathematical Analysis; 50; 3; 9-2018; 2664-2680 0036-1410 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/pdf/1610.04772.pdf info:eu-repo/semantics/altIdentifier/url/https://epubs.siam.org/doi/10.1137/16M110191X info:eu-repo/semantics/altIdentifier/doi/10.1137/16M110191X |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Society for Industrial and Applied Mathematics |
| publisher.none.fl_str_mv |
Society for Industrial and Applied Mathematics |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782478285537280 |
| score |
12.982451 |