Subresultants, sylvester sums and the rational interpolation problem
- Autores
- D'Andrea, Carlos; Krick, Teresa Elena Genoveva; Szanto, Agnes
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We present a solution for the classical univariate rational interpolation problem by means of (univariate) subresultants. In the case of Cauchy interpolation (interpolation without multiplicities), we give explicit formulas for the solution in terms of symmetric functions of the input data, generalizing the well-known formulas for Lagrange interpolation. In the case of the osculatory rational interpolation (interpolation with multiplicities), we give determinantal expressions in terms of the input data, making explicit some matrix formulations that can independently be derived from previous results by Beckermann and Labahn.
Fil: D'Andrea, Carlos. Universidad de Barcelona; España
Fil: Krick, Teresa Elena Genoveva. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Szanto, Agnes. North Carolina State University; Estados Unidos - Materia
-
Rational Interpolation
Subresultants - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18916
Ver los metadatos del registro completo
id |
CONICETDig_3660418f585ec0ccc46a47098d5349da |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18916 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Subresultants, sylvester sums and the rational interpolation problemD'Andrea, CarlosKrick, Teresa Elena GenovevaSzanto, AgnesRational InterpolationSubresultantshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We present a solution for the classical univariate rational interpolation problem by means of (univariate) subresultants. In the case of Cauchy interpolation (interpolation without multiplicities), we give explicit formulas for the solution in terms of symmetric functions of the input data, generalizing the well-known formulas for Lagrange interpolation. In the case of the osculatory rational interpolation (interpolation with multiplicities), we give determinantal expressions in terms of the input data, making explicit some matrix formulations that can independently be derived from previous results by Beckermann and Labahn.Fil: D'Andrea, Carlos. Universidad de Barcelona; EspañaFil: Krick, Teresa Elena Genoveva. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Szanto, Agnes. North Carolina State University; Estados UnidosElsevier2015-06info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18916D'Andrea, Carlos; Krick, Teresa Elena Genoveva; Szanto, Agnes; Subresultants, sylvester sums and the rational interpolation problem; Elsevier; Journal Of Symbolic Computation; 68; Part 1; 6-2015; 72-830747-7171CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jsc.2014.08.008info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0747717114000583info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1211.6895info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:46:36Zoai:ri.conicet.gov.ar:11336/18916instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:46:36.63CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Subresultants, sylvester sums and the rational interpolation problem |
title |
Subresultants, sylvester sums and the rational interpolation problem |
spellingShingle |
Subresultants, sylvester sums and the rational interpolation problem D'Andrea, Carlos Rational Interpolation Subresultants |
title_short |
Subresultants, sylvester sums and the rational interpolation problem |
title_full |
Subresultants, sylvester sums and the rational interpolation problem |
title_fullStr |
Subresultants, sylvester sums and the rational interpolation problem |
title_full_unstemmed |
Subresultants, sylvester sums and the rational interpolation problem |
title_sort |
Subresultants, sylvester sums and the rational interpolation problem |
dc.creator.none.fl_str_mv |
D'Andrea, Carlos Krick, Teresa Elena Genoveva Szanto, Agnes |
author |
D'Andrea, Carlos |
author_facet |
D'Andrea, Carlos Krick, Teresa Elena Genoveva Szanto, Agnes |
author_role |
author |
author2 |
Krick, Teresa Elena Genoveva Szanto, Agnes |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Rational Interpolation Subresultants |
topic |
Rational Interpolation Subresultants |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We present a solution for the classical univariate rational interpolation problem by means of (univariate) subresultants. In the case of Cauchy interpolation (interpolation without multiplicities), we give explicit formulas for the solution in terms of symmetric functions of the input data, generalizing the well-known formulas for Lagrange interpolation. In the case of the osculatory rational interpolation (interpolation with multiplicities), we give determinantal expressions in terms of the input data, making explicit some matrix formulations that can independently be derived from previous results by Beckermann and Labahn. Fil: D'Andrea, Carlos. Universidad de Barcelona; España Fil: Krick, Teresa Elena Genoveva. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Szanto, Agnes. North Carolina State University; Estados Unidos |
description |
We present a solution for the classical univariate rational interpolation problem by means of (univariate) subresultants. In the case of Cauchy interpolation (interpolation without multiplicities), we give explicit formulas for the solution in terms of symmetric functions of the input data, generalizing the well-known formulas for Lagrange interpolation. In the case of the osculatory rational interpolation (interpolation with multiplicities), we give determinantal expressions in terms of the input data, making explicit some matrix formulations that can independently be derived from previous results by Beckermann and Labahn. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-06 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18916 D'Andrea, Carlos; Krick, Teresa Elena Genoveva; Szanto, Agnes; Subresultants, sylvester sums and the rational interpolation problem; Elsevier; Journal Of Symbolic Computation; 68; Part 1; 6-2015; 72-83 0747-7171 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/18916 |
identifier_str_mv |
D'Andrea, Carlos; Krick, Teresa Elena Genoveva; Szanto, Agnes; Subresultants, sylvester sums and the rational interpolation problem; Elsevier; Journal Of Symbolic Computation; 68; Part 1; 6-2015; 72-83 0747-7171 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jsc.2014.08.008 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0747717114000583 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1211.6895 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268805659623424 |
score |
13.13397 |