The symmetric Radon-Nikodým property for tensor norms
- Autores
- Carando, Daniel Germán; Galicer, Daniel Eric
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We introduce the symmetric-Radon-Nikodým property (sRN pr operty) for finitely generated s-tensor norms β of order n and prove a Lewis type theorem for s-tensor norms with this property. As a consequence, if β is a projective s-tensor norm with the sRN prop- erty, then for every Asplund space E , the canonical map e ⊗ n,s β E ′ → e ⊗ n,s β ′ E ′ is a metric surjection. This can be rephrased as the isometric isomorph ism Q min ( E ) = Q ( E ) for certain polynomial ideal Q . We also relate the sRN property of an s-tensor norm with the A splund or Radon-Nikodým properties of different tensor products. S imilar results for full tensor products are also given. As an application, results concern ing the ideal of n -homogeneous extendible polynomials are obtained, as well as a new proof o f the well known isometric isomorphism between nuclear and integral polynomials on As plund spaces.
Fil: Carando, Daniel Germán. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Galicer, Daniel Eric. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
Polynomial ideals
Symmetric tensor products of Banach spaces
Radon-Nikodým property - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/14933
Ver los metadatos del registro completo
id |
CONICETDig_4989d3c47d88b2e597b54b043b9cbd40 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/14933 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
The symmetric Radon-Nikodým property for tensor normsCarando, Daniel GermánGalicer, Daniel EricPolynomial idealsSymmetric tensor products of Banach spacesRadon-Nikodým propertyhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We introduce the symmetric-Radon-Nikodým property (sRN pr operty) for finitely generated s-tensor norms β of order n and prove a Lewis type theorem for s-tensor norms with this property. As a consequence, if β is a projective s-tensor norm with the sRN prop- erty, then for every Asplund space E , the canonical map e ⊗ n,s β E ′ → e ⊗ n,s β ′ E ′ is a metric surjection. This can be rephrased as the isometric isomorph ism Q min ( E ) = Q ( E ) for certain polynomial ideal Q . We also relate the sRN property of an s-tensor norm with the A splund or Radon-Nikodým properties of different tensor products. S imilar results for full tensor products are also given. As an application, results concern ing the ideal of n -homogeneous extendible polynomials are obtained, as well as a new proof o f the well known isometric isomorphism between nuclear and integral polynomials on As plund spaces.Fil: Carando, Daniel Germán. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Galicer, Daniel Eric. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaElsevier2010-09-29info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14933Carando, Daniel Germán; Galicer, Daniel Eric; The symmetric Radon-Nikodým property for tensor norms; Elsevier; Journal Of Mathematical Analysis And Applications; 375; 2; 29-9-2010; 553-5650022-247Xenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X10008012info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2010.09.044info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:14:45Zoai:ri.conicet.gov.ar:11336/14933instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:14:46.169CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
The symmetric Radon-Nikodým property for tensor norms |
title |
The symmetric Radon-Nikodým property for tensor norms |
spellingShingle |
The symmetric Radon-Nikodým property for tensor norms Carando, Daniel Germán Polynomial ideals Symmetric tensor products of Banach spaces Radon-Nikodým property |
title_short |
The symmetric Radon-Nikodým property for tensor norms |
title_full |
The symmetric Radon-Nikodým property for tensor norms |
title_fullStr |
The symmetric Radon-Nikodým property for tensor norms |
title_full_unstemmed |
The symmetric Radon-Nikodým property for tensor norms |
title_sort |
The symmetric Radon-Nikodým property for tensor norms |
dc.creator.none.fl_str_mv |
Carando, Daniel Germán Galicer, Daniel Eric |
author |
Carando, Daniel Germán |
author_facet |
Carando, Daniel Germán Galicer, Daniel Eric |
author_role |
author |
author2 |
Galicer, Daniel Eric |
author2_role |
author |
dc.subject.none.fl_str_mv |
Polynomial ideals Symmetric tensor products of Banach spaces Radon-Nikodým property |
topic |
Polynomial ideals Symmetric tensor products of Banach spaces Radon-Nikodým property |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We introduce the symmetric-Radon-Nikodým property (sRN pr operty) for finitely generated s-tensor norms β of order n and prove a Lewis type theorem for s-tensor norms with this property. As a consequence, if β is a projective s-tensor norm with the sRN prop- erty, then for every Asplund space E , the canonical map e ⊗ n,s β E ′ → e ⊗ n,s β ′ E ′ is a metric surjection. This can be rephrased as the isometric isomorph ism Q min ( E ) = Q ( E ) for certain polynomial ideal Q . We also relate the sRN property of an s-tensor norm with the A splund or Radon-Nikodým properties of different tensor products. S imilar results for full tensor products are also given. As an application, results concern ing the ideal of n -homogeneous extendible polynomials are obtained, as well as a new proof o f the well known isometric isomorphism between nuclear and integral polynomials on As plund spaces. Fil: Carando, Daniel Germán. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Galicer, Daniel Eric. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
We introduce the symmetric-Radon-Nikodým property (sRN pr operty) for finitely generated s-tensor norms β of order n and prove a Lewis type theorem for s-tensor norms with this property. As a consequence, if β is a projective s-tensor norm with the sRN prop- erty, then for every Asplund space E , the canonical map e ⊗ n,s β E ′ → e ⊗ n,s β ′ E ′ is a metric surjection. This can be rephrased as the isometric isomorph ism Q min ( E ) = Q ( E ) for certain polynomial ideal Q . We also relate the sRN property of an s-tensor norm with the A splund or Radon-Nikodým properties of different tensor products. S imilar results for full tensor products are also given. As an application, results concern ing the ideal of n -homogeneous extendible polynomials are obtained, as well as a new proof o f the well known isometric isomorphism between nuclear and integral polynomials on As plund spaces. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-09-29 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/14933 Carando, Daniel Germán; Galicer, Daniel Eric; The symmetric Radon-Nikodým property for tensor norms; Elsevier; Journal Of Mathematical Analysis And Applications; 375; 2; 29-9-2010; 553-565 0022-247X |
url |
http://hdl.handle.net/11336/14933 |
identifier_str_mv |
Carando, Daniel Germán; Galicer, Daniel Eric; The symmetric Radon-Nikodým property for tensor norms; Elsevier; Journal Of Mathematical Analysis And Applications; 375; 2; 29-9-2010; 553-565 0022-247X |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X10008012 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2010.09.044 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier |
publisher.none.fl_str_mv |
Elsevier |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083295374213120 |
score |
13.22299 |