Coincidence of extendible vector-valued ideals with their minimal kernel
- Autores
- Galicer, Daniel Eric; Villafañe, Norberto Román
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We provide coincidence results for vector-valued ideals of multilinear operators. More precisely, if A is an ideal of n-linear mappings we give conditions for which the equality A(E1, ..., En; F) = Amin(E1, ..., En; F) holds isometrically. As an application, we obtain in many cases that the monomials form a Schauder basis of the space A(E1, ..., En; F). Several structural and geometric properties are also derived using this equality. We apply our results to the particular case where A is the classical ideal of extendible or Pietsch-integral multilinear operators. Similar statements are given for ideals of vector-valued homogeneous polynomials.
Fil: Galicer, Daniel Eric. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina
Fil: Villafañe, Norberto Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina - Materia
-
Multilinear Mappings
Radon-Nikodým Property
Polynomial Ideals
Metric Theory of Tensor Products - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/18864
Ver los metadatos del registro completo
id |
CONICETDig_44f83a3ed5e52601db05c63ed930b987 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/18864 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Coincidence of extendible vector-valued ideals with their minimal kernelGalicer, Daniel EricVillafañe, Norberto RománMultilinear MappingsRadon-Nikodým PropertyPolynomial IdealsMetric Theory of Tensor Productshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We provide coincidence results for vector-valued ideals of multilinear operators. More precisely, if A is an ideal of n-linear mappings we give conditions for which the equality A(E1, ..., En; F) = Amin(E1, ..., En; F) holds isometrically. As an application, we obtain in many cases that the monomials form a Schauder basis of the space A(E1, ..., En; F). Several structural and geometric properties are also derived using this equality. We apply our results to the particular case where A is the classical ideal of extendible or Pietsch-integral multilinear operators. Similar statements are given for ideals of vector-valued homogeneous polynomials.Fil: Galicer, Daniel Eric. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; ArgentinaFil: Villafañe, Norberto Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; ArgentinaElsevier Inc2015-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/18864Galicer, Daniel Eric; Villafañe, Norberto Román; Coincidence of extendible vector-valued ideals with their minimal kernel; Elsevier Inc; Journal Of Mathematical Analysis And Applications; 421; 2; 1-2015; 1743-17660022-247XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2014.07.023info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X14006660info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T14:23:41Zoai:ri.conicet.gov.ar:11336/18864instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 14:23:41.366CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Coincidence of extendible vector-valued ideals with their minimal kernel |
title |
Coincidence of extendible vector-valued ideals with their minimal kernel |
spellingShingle |
Coincidence of extendible vector-valued ideals with their minimal kernel Galicer, Daniel Eric Multilinear Mappings Radon-Nikodým Property Polynomial Ideals Metric Theory of Tensor Products |
title_short |
Coincidence of extendible vector-valued ideals with their minimal kernel |
title_full |
Coincidence of extendible vector-valued ideals with their minimal kernel |
title_fullStr |
Coincidence of extendible vector-valued ideals with their minimal kernel |
title_full_unstemmed |
Coincidence of extendible vector-valued ideals with their minimal kernel |
title_sort |
Coincidence of extendible vector-valued ideals with their minimal kernel |
dc.creator.none.fl_str_mv |
Galicer, Daniel Eric Villafañe, Norberto Román |
author |
Galicer, Daniel Eric |
author_facet |
Galicer, Daniel Eric Villafañe, Norberto Román |
author_role |
author |
author2 |
Villafañe, Norberto Román |
author2_role |
author |
dc.subject.none.fl_str_mv |
Multilinear Mappings Radon-Nikodým Property Polynomial Ideals Metric Theory of Tensor Products |
topic |
Multilinear Mappings Radon-Nikodým Property Polynomial Ideals Metric Theory of Tensor Products |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We provide coincidence results for vector-valued ideals of multilinear operators. More precisely, if A is an ideal of n-linear mappings we give conditions for which the equality A(E1, ..., En; F) = Amin(E1, ..., En; F) holds isometrically. As an application, we obtain in many cases that the monomials form a Schauder basis of the space A(E1, ..., En; F). Several structural and geometric properties are also derived using this equality. We apply our results to the particular case where A is the classical ideal of extendible or Pietsch-integral multilinear operators. Similar statements are given for ideals of vector-valued homogeneous polynomials. Fil: Galicer, Daniel Eric. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina Fil: Villafañe, Norberto Román. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santalo". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santalo"; Argentina |
description |
We provide coincidence results for vector-valued ideals of multilinear operators. More precisely, if A is an ideal of n-linear mappings we give conditions for which the equality A(E1, ..., En; F) = Amin(E1, ..., En; F) holds isometrically. As an application, we obtain in many cases that the monomials form a Schauder basis of the space A(E1, ..., En; F). Several structural and geometric properties are also derived using this equality. We apply our results to the particular case where A is the classical ideal of extendible or Pietsch-integral multilinear operators. Similar statements are given for ideals of vector-valued homogeneous polynomials. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/18864 Galicer, Daniel Eric; Villafañe, Norberto Román; Coincidence of extendible vector-valued ideals with their minimal kernel; Elsevier Inc; Journal Of Mathematical Analysis And Applications; 421; 2; 1-2015; 1743-1766 0022-247X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/18864 |
identifier_str_mv |
Galicer, Daniel Eric; Villafañe, Norberto Román; Coincidence of extendible vector-valued ideals with their minimal kernel; Elsevier Inc; Journal Of Mathematical Analysis And Applications; 421; 2; 1-2015; 1743-1766 0022-247X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2014.07.023 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X14006660 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Inc |
publisher.none.fl_str_mv |
Elsevier Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846082650136117248 |
score |
13.22299 |