Natural symmetric tensor norms

Autores
Carando, Daniel Germán; Galicer, Daniel Eric
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In the spirit of the work of Grothendieck, we introduce and study natural symmetric n-fold tensor norms. These are norms obtained from the projective norm by some natural operations. We prove that there are exactly six natural symmetric tensor norms for n 3, a noteworthy difference with the 2-fold case in which there are four. We also describe the polynomial ideals associated to these natural symmetric tensor norms. Using a symmetric version of a result of Carne, we establish which natural symmetric tensor norms preserve the Banach algebra structure.
Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Galicer, Daniel Eric. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
Symmetric Tensor Products
Polinomial Ideals
Natural Tensor Norms
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/19927

id CONICETDig_2e6521a8f3b554363f0d349b5465f1b2
oai_identifier_str oai:ri.conicet.gov.ar:11336/19927
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Natural symmetric tensor normsCarando, Daniel GermánGalicer, Daniel EricSymmetric Tensor ProductsPolinomial IdealsNatural Tensor Normshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In the spirit of the work of Grothendieck, we introduce and study natural symmetric n-fold tensor norms. These are norms obtained from the projective norm by some natural operations. We prove that there are exactly six natural symmetric tensor norms for n 3, a noteworthy difference with the 2-fold case in which there are four. We also describe the polynomial ideals associated to these natural symmetric tensor norms. Using a symmetric version of a result of Carne, we establish which natural symmetric tensor norms preserve the Banach algebra structure.Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Galicer, Daniel Eric. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaElsevier Inc2012-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19927Carando, Daniel Germán; Galicer, Daniel Eric; Natural symmetric tensor norms; Elsevier Inc; Journal Of Mathematical Analysis And Applications; 387; 2; 3-2012; 568-5810022-247XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2011.09.027info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X11008845info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1002.3950info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:03:34Zoai:ri.conicet.gov.ar:11336/19927instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:03:34.886CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Natural symmetric tensor norms
title Natural symmetric tensor norms
spellingShingle Natural symmetric tensor norms
Carando, Daniel Germán
Symmetric Tensor Products
Polinomial Ideals
Natural Tensor Norms
title_short Natural symmetric tensor norms
title_full Natural symmetric tensor norms
title_fullStr Natural symmetric tensor norms
title_full_unstemmed Natural symmetric tensor norms
title_sort Natural symmetric tensor norms
dc.creator.none.fl_str_mv Carando, Daniel Germán
Galicer, Daniel Eric
author Carando, Daniel Germán
author_facet Carando, Daniel Germán
Galicer, Daniel Eric
author_role author
author2 Galicer, Daniel Eric
author2_role author
dc.subject.none.fl_str_mv Symmetric Tensor Products
Polinomial Ideals
Natural Tensor Norms
topic Symmetric Tensor Products
Polinomial Ideals
Natural Tensor Norms
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv In the spirit of the work of Grothendieck, we introduce and study natural symmetric n-fold tensor norms. These are norms obtained from the projective norm by some natural operations. We prove that there are exactly six natural symmetric tensor norms for n 3, a noteworthy difference with the 2-fold case in which there are four. We also describe the polynomial ideals associated to these natural symmetric tensor norms. Using a symmetric version of a result of Carne, we establish which natural symmetric tensor norms preserve the Banach algebra structure.
Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Galicer, Daniel Eric. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description In the spirit of the work of Grothendieck, we introduce and study natural symmetric n-fold tensor norms. These are norms obtained from the projective norm by some natural operations. We prove that there are exactly six natural symmetric tensor norms for n 3, a noteworthy difference with the 2-fold case in which there are four. We also describe the polynomial ideals associated to these natural symmetric tensor norms. Using a symmetric version of a result of Carne, we establish which natural symmetric tensor norms preserve the Banach algebra structure.
publishDate 2012
dc.date.none.fl_str_mv 2012-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/19927
Carando, Daniel Germán; Galicer, Daniel Eric; Natural symmetric tensor norms; Elsevier Inc; Journal Of Mathematical Analysis And Applications; 387; 2; 3-2012; 568-581
0022-247X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/19927
identifier_str_mv Carando, Daniel Germán; Galicer, Daniel Eric; Natural symmetric tensor norms; Elsevier Inc; Journal Of Mathematical Analysis And Applications; 387; 2; 3-2012; 568-581
0022-247X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2011.09.027
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X11008845
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1002.3950
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Inc
publisher.none.fl_str_mv Elsevier Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842980092648620032
score 12.993085