Natural symmetric tensor norms
- Autores
- Carando, Daniel Germán; Galicer, Daniel Eric
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the spirit of the work of Grothendieck, we introduce and study natural symmetric n-fold tensor norms. These are norms obtained from the projective norm by some natural operations. We prove that there are exactly six natural symmetric tensor norms for n 3, a noteworthy difference with the 2-fold case in which there are four. We also describe the polynomial ideals associated to these natural symmetric tensor norms. Using a symmetric version of a result of Carne, we establish which natural symmetric tensor norms preserve the Banach algebra structure.
Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Galicer, Daniel Eric. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
Symmetric Tensor Products
Polinomial Ideals
Natural Tensor Norms - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/19927
Ver los metadatos del registro completo
id |
CONICETDig_2e6521a8f3b554363f0d349b5465f1b2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/19927 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Natural symmetric tensor normsCarando, Daniel GermánGalicer, Daniel EricSymmetric Tensor ProductsPolinomial IdealsNatural Tensor Normshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In the spirit of the work of Grothendieck, we introduce and study natural symmetric n-fold tensor norms. These are norms obtained from the projective norm by some natural operations. We prove that there are exactly six natural symmetric tensor norms for n 3, a noteworthy difference with the 2-fold case in which there are four. We also describe the polynomial ideals associated to these natural symmetric tensor norms. Using a symmetric version of a result of Carne, we establish which natural symmetric tensor norms preserve the Banach algebra structure.Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Galicer, Daniel Eric. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaElsevier Inc2012-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19927Carando, Daniel Germán; Galicer, Daniel Eric; Natural symmetric tensor norms; Elsevier Inc; Journal Of Mathematical Analysis And Applications; 387; 2; 3-2012; 568-5810022-247XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2011.09.027info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X11008845info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1002.3950info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:03:34Zoai:ri.conicet.gov.ar:11336/19927instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:03:34.886CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Natural symmetric tensor norms |
title |
Natural symmetric tensor norms |
spellingShingle |
Natural symmetric tensor norms Carando, Daniel Germán Symmetric Tensor Products Polinomial Ideals Natural Tensor Norms |
title_short |
Natural symmetric tensor norms |
title_full |
Natural symmetric tensor norms |
title_fullStr |
Natural symmetric tensor norms |
title_full_unstemmed |
Natural symmetric tensor norms |
title_sort |
Natural symmetric tensor norms |
dc.creator.none.fl_str_mv |
Carando, Daniel Germán Galicer, Daniel Eric |
author |
Carando, Daniel Germán |
author_facet |
Carando, Daniel Germán Galicer, Daniel Eric |
author_role |
author |
author2 |
Galicer, Daniel Eric |
author2_role |
author |
dc.subject.none.fl_str_mv |
Symmetric Tensor Products Polinomial Ideals Natural Tensor Norms |
topic |
Symmetric Tensor Products Polinomial Ideals Natural Tensor Norms |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In the spirit of the work of Grothendieck, we introduce and study natural symmetric n-fold tensor norms. These are norms obtained from the projective norm by some natural operations. We prove that there are exactly six natural symmetric tensor norms for n 3, a noteworthy difference with the 2-fold case in which there are four. We also describe the polynomial ideals associated to these natural symmetric tensor norms. Using a symmetric version of a result of Carne, we establish which natural symmetric tensor norms preserve the Banach algebra structure. Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Galicer, Daniel Eric. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
In the spirit of the work of Grothendieck, we introduce and study natural symmetric n-fold tensor norms. These are norms obtained from the projective norm by some natural operations. We prove that there are exactly six natural symmetric tensor norms for n 3, a noteworthy difference with the 2-fold case in which there are four. We also describe the polynomial ideals associated to these natural symmetric tensor norms. Using a symmetric version of a result of Carne, we establish which natural symmetric tensor norms preserve the Banach algebra structure. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/19927 Carando, Daniel Germán; Galicer, Daniel Eric; Natural symmetric tensor norms; Elsevier Inc; Journal Of Mathematical Analysis And Applications; 387; 2; 3-2012; 568-581 0022-247X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/19927 |
identifier_str_mv |
Carando, Daniel Germán; Galicer, Daniel Eric; Natural symmetric tensor norms; Elsevier Inc; Journal Of Mathematical Analysis And Applications; 387; 2; 3-2012; 568-581 0022-247X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jmaa.2011.09.027 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0022247X11008845 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1002.3950 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Inc |
publisher.none.fl_str_mv |
Elsevier Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842980092648620032 |
score |
12.993085 |