Natural symmetric tensor norms

Autores
Carando, D.; Galicer, D.
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
In the spirit of the work of Grothendieck, we introduce and study natural symmetric n-fold tensor norms. These are norms obtained from the projective norm by some natural operations. We prove that there are exactly six natural symmetric tensor norms for n≥ 3, a noteworthy difference with the 2-fold case in which there are four. We also describe the polynomial ideals associated to these natural symmetric tensor norms. Using a symmetric version of a result of Carne, we establish which natural symmetric tensor norms preserve the Banach algebra structure. © 2011 Elsevier Inc.
Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Galicer, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J. Math. Anal. Appl. 2012;387(2):568-581
Materia
Banach algebras
Natural tensor norms
Polynomials in Banach spaces
Symmetric tensor products
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_0022247X_v387_n2_p568_Carando

id BDUBAFCEN_9211dbc3c8dde734eafaa4763c13d36e
oai_identifier_str paperaa:paper_0022247X_v387_n2_p568_Carando
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Natural symmetric tensor normsCarando, D.Galicer, D.Banach algebrasNatural tensor normsPolynomials in Banach spacesSymmetric tensor productsIn the spirit of the work of Grothendieck, we introduce and study natural symmetric n-fold tensor norms. These are norms obtained from the projective norm by some natural operations. We prove that there are exactly six natural symmetric tensor norms for n≥ 3, a noteworthy difference with the 2-fold case in which there are four. We also describe the polynomial ideals associated to these natural symmetric tensor norms. Using a symmetric version of a result of Carne, we establish which natural symmetric tensor norms preserve the Banach algebra structure. © 2011 Elsevier Inc.Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Galicer, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2012info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0022247X_v387_n2_p568_CarandoJ. Math. Anal. Appl. 2012;387(2):568-581reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:06Zpaperaa:paper_0022247X_v387_n2_p568_CarandoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:07.475Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Natural symmetric tensor norms
title Natural symmetric tensor norms
spellingShingle Natural symmetric tensor norms
Carando, D.
Banach algebras
Natural tensor norms
Polynomials in Banach spaces
Symmetric tensor products
title_short Natural symmetric tensor norms
title_full Natural symmetric tensor norms
title_fullStr Natural symmetric tensor norms
title_full_unstemmed Natural symmetric tensor norms
title_sort Natural symmetric tensor norms
dc.creator.none.fl_str_mv Carando, D.
Galicer, D.
author Carando, D.
author_facet Carando, D.
Galicer, D.
author_role author
author2 Galicer, D.
author2_role author
dc.subject.none.fl_str_mv Banach algebras
Natural tensor norms
Polynomials in Banach spaces
Symmetric tensor products
topic Banach algebras
Natural tensor norms
Polynomials in Banach spaces
Symmetric tensor products
dc.description.none.fl_txt_mv In the spirit of the work of Grothendieck, we introduce and study natural symmetric n-fold tensor norms. These are norms obtained from the projective norm by some natural operations. We prove that there are exactly six natural symmetric tensor norms for n≥ 3, a noteworthy difference with the 2-fold case in which there are four. We also describe the polynomial ideals associated to these natural symmetric tensor norms. Using a symmetric version of a result of Carne, we establish which natural symmetric tensor norms preserve the Banach algebra structure. © 2011 Elsevier Inc.
Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Galicer, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description In the spirit of the work of Grothendieck, we introduce and study natural symmetric n-fold tensor norms. These are norms obtained from the projective norm by some natural operations. We prove that there are exactly six natural symmetric tensor norms for n≥ 3, a noteworthy difference with the 2-fold case in which there are four. We also describe the polynomial ideals associated to these natural symmetric tensor norms. Using a symmetric version of a result of Carne, we establish which natural symmetric tensor norms preserve the Banach algebra structure. © 2011 Elsevier Inc.
publishDate 2012
dc.date.none.fl_str_mv 2012
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_0022247X_v387_n2_p568_Carando
url http://hdl.handle.net/20.500.12110/paper_0022247X_v387_n2_p568_Carando
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Math. Anal. Appl. 2012;387(2):568-581
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1844618739784351744
score 13.070432