Natural symmetric tensor norms
- Autores
- Carando, D.; Galicer, D.
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In the spirit of the work of Grothendieck, we introduce and study natural symmetric n-fold tensor norms. These are norms obtained from the projective norm by some natural operations. We prove that there are exactly six natural symmetric tensor norms for n≥ 3, a noteworthy difference with the 2-fold case in which there are four. We also describe the polynomial ideals associated to these natural symmetric tensor norms. Using a symmetric version of a result of Carne, we establish which natural symmetric tensor norms preserve the Banach algebra structure. © 2011 Elsevier Inc.
Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Galicer, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Math. Anal. Appl. 2012;387(2):568-581
- Materia
-
Banach algebras
Natural tensor norms
Polynomials in Banach spaces
Symmetric tensor products - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_0022247X_v387_n2_p568_Carando
Ver los metadatos del registro completo
id |
BDUBAFCEN_9211dbc3c8dde734eafaa4763c13d36e |
---|---|
oai_identifier_str |
paperaa:paper_0022247X_v387_n2_p568_Carando |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Natural symmetric tensor normsCarando, D.Galicer, D.Banach algebrasNatural tensor normsPolynomials in Banach spacesSymmetric tensor productsIn the spirit of the work of Grothendieck, we introduce and study natural symmetric n-fold tensor norms. These are norms obtained from the projective norm by some natural operations. We prove that there are exactly six natural symmetric tensor norms for n≥ 3, a noteworthy difference with the 2-fold case in which there are four. We also describe the polynomial ideals associated to these natural symmetric tensor norms. Using a symmetric version of a result of Carne, we establish which natural symmetric tensor norms preserve the Banach algebra structure. © 2011 Elsevier Inc.Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Galicer, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2012info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0022247X_v387_n2_p568_CarandoJ. Math. Anal. Appl. 2012;387(2):568-581reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:06Zpaperaa:paper_0022247X_v387_n2_p568_CarandoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:07.475Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Natural symmetric tensor norms |
title |
Natural symmetric tensor norms |
spellingShingle |
Natural symmetric tensor norms Carando, D. Banach algebras Natural tensor norms Polynomials in Banach spaces Symmetric tensor products |
title_short |
Natural symmetric tensor norms |
title_full |
Natural symmetric tensor norms |
title_fullStr |
Natural symmetric tensor norms |
title_full_unstemmed |
Natural symmetric tensor norms |
title_sort |
Natural symmetric tensor norms |
dc.creator.none.fl_str_mv |
Carando, D. Galicer, D. |
author |
Carando, D. |
author_facet |
Carando, D. Galicer, D. |
author_role |
author |
author2 |
Galicer, D. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Banach algebras Natural tensor norms Polynomials in Banach spaces Symmetric tensor products |
topic |
Banach algebras Natural tensor norms Polynomials in Banach spaces Symmetric tensor products |
dc.description.none.fl_txt_mv |
In the spirit of the work of Grothendieck, we introduce and study natural symmetric n-fold tensor norms. These are norms obtained from the projective norm by some natural operations. We prove that there are exactly six natural symmetric tensor norms for n≥ 3, a noteworthy difference with the 2-fold case in which there are four. We also describe the polynomial ideals associated to these natural symmetric tensor norms. Using a symmetric version of a result of Carne, we establish which natural symmetric tensor norms preserve the Banach algebra structure. © 2011 Elsevier Inc. Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Galicer, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
In the spirit of the work of Grothendieck, we introduce and study natural symmetric n-fold tensor norms. These are norms obtained from the projective norm by some natural operations. We prove that there are exactly six natural symmetric tensor norms for n≥ 3, a noteworthy difference with the 2-fold case in which there are four. We also describe the polynomial ideals associated to these natural symmetric tensor norms. Using a symmetric version of a result of Carne, we establish which natural symmetric tensor norms preserve the Banach algebra structure. © 2011 Elsevier Inc. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_0022247X_v387_n2_p568_Carando |
url |
http://hdl.handle.net/20.500.12110/paper_0022247X_v387_n2_p568_Carando |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
J. Math. Anal. Appl. 2012;387(2):568-581 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618739784351744 |
score |
13.070432 |