Extending polynomials in maximal and minimal ideals
- Autores
- Carando, Daniel Germán; Galicer, Daniel Eric
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Given a homogeneous polynomial on a Banach space E belonging to some maximal or minimal polynomial ideal, we consider its iterated extension to an ultrapower of E and prove that this extension remains in the ideal and has the same ideal norm. As a consequence, we show that the Aron-Berner extension is a well defined isometry for any maximal or minimal ideal of homogeneous polynomials. This allows us to obtain symmetric versions of some basic results of the metric theory of tensor products.
Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Galicer, Daniel Eric. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina - Materia
-
EXTENSION OF POLYNOMIALS
POLYNOMIAL IDEALS
SYMMETRIC TENSOR PRODUCTS OF BANACH SPACES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/69129
Ver los metadatos del registro completo
id |
CONICETDig_2ac3d7b5123fee7708c52b3d6070e36a |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/69129 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Extending polynomials in maximal and minimal idealsCarando, Daniel GermánGalicer, Daniel EricEXTENSION OF POLYNOMIALSPOLYNOMIAL IDEALSSYMMETRIC TENSOR PRODUCTS OF BANACH SPACEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given a homogeneous polynomial on a Banach space E belonging to some maximal or minimal polynomial ideal, we consider its iterated extension to an ultrapower of E and prove that this extension remains in the ideal and has the same ideal norm. As a consequence, we show that the Aron-Berner extension is a well defined isometry for any maximal or minimal ideal of homogeneous polynomials. This allows us to obtain symmetric versions of some basic results of the metric theory of tensor products.Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Galicer, Daniel Eric. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaKyoto Univeristy2010-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/69129Carando, Daniel Germán; Galicer, Daniel Eric; Extending polynomials in maximal and minimal ideals; Kyoto Univeristy; Publications Of The Research Institute For Mathematical Sciences; 46; 3; 3-2010; 669-6800034-53181663-4926CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0910.3888info:eu-repo/semantics/altIdentifier/url/https://www.ems-ph.org/journals/show_abstract.php?issn=0034-5318&vol=46&iss=3&rank=8info:eu-repo/semantics/altIdentifier/doi/10.2977/PRIMS/21info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:12:28Zoai:ri.conicet.gov.ar:11336/69129instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:12:28.291CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Extending polynomials in maximal and minimal ideals |
title |
Extending polynomials in maximal and minimal ideals |
spellingShingle |
Extending polynomials in maximal and minimal ideals Carando, Daniel Germán EXTENSION OF POLYNOMIALS POLYNOMIAL IDEALS SYMMETRIC TENSOR PRODUCTS OF BANACH SPACES |
title_short |
Extending polynomials in maximal and minimal ideals |
title_full |
Extending polynomials in maximal and minimal ideals |
title_fullStr |
Extending polynomials in maximal and minimal ideals |
title_full_unstemmed |
Extending polynomials in maximal and minimal ideals |
title_sort |
Extending polynomials in maximal and minimal ideals |
dc.creator.none.fl_str_mv |
Carando, Daniel Germán Galicer, Daniel Eric |
author |
Carando, Daniel Germán |
author_facet |
Carando, Daniel Germán Galicer, Daniel Eric |
author_role |
author |
author2 |
Galicer, Daniel Eric |
author2_role |
author |
dc.subject.none.fl_str_mv |
EXTENSION OF POLYNOMIALS POLYNOMIAL IDEALS SYMMETRIC TENSOR PRODUCTS OF BANACH SPACES |
topic |
EXTENSION OF POLYNOMIALS POLYNOMIAL IDEALS SYMMETRIC TENSOR PRODUCTS OF BANACH SPACES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Given a homogeneous polynomial on a Banach space E belonging to some maximal or minimal polynomial ideal, we consider its iterated extension to an ultrapower of E and prove that this extension remains in the ideal and has the same ideal norm. As a consequence, we show that the Aron-Berner extension is a well defined isometry for any maximal or minimal ideal of homogeneous polynomials. This allows us to obtain symmetric versions of some basic results of the metric theory of tensor products. Fil: Carando, Daniel Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Galicer, Daniel Eric. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina |
description |
Given a homogeneous polynomial on a Banach space E belonging to some maximal or minimal polynomial ideal, we consider its iterated extension to an ultrapower of E and prove that this extension remains in the ideal and has the same ideal norm. As a consequence, we show that the Aron-Berner extension is a well defined isometry for any maximal or minimal ideal of homogeneous polynomials. This allows us to obtain symmetric versions of some basic results of the metric theory of tensor products. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/69129 Carando, Daniel Germán; Galicer, Daniel Eric; Extending polynomials in maximal and minimal ideals; Kyoto Univeristy; Publications Of The Research Institute For Mathematical Sciences; 46; 3; 3-2010; 669-680 0034-5318 1663-4926 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/69129 |
identifier_str_mv |
Carando, Daniel Germán; Galicer, Daniel Eric; Extending polynomials in maximal and minimal ideals; Kyoto Univeristy; Publications Of The Research Institute For Mathematical Sciences; 46; 3; 3-2010; 669-680 0034-5318 1663-4926 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0910.3888 info:eu-repo/semantics/altIdentifier/url/https://www.ems-ph.org/journals/show_abstract.php?issn=0034-5318&vol=46&iss=3&rank=8 info:eu-repo/semantics/altIdentifier/doi/10.2977/PRIMS/21 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Kyoto Univeristy |
publisher.none.fl_str_mv |
Kyoto Univeristy |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844614032078667776 |
score |
13.070432 |