The symmetric Radon-Nikodỳm property for tensor norms
- Autores
- Carando, D.; Galicer, D.
- Año de publicación
- 2011
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We introduce the symmetric Radon-Nikodỳm property (sRN property) for finitely generated s-tensor norms β of order n and prove a Lewis type theorem for s-tensor norms with this property. As a consequence, if β is a projective s-tensor norm with the sRN property, then for every Asplund space E, the canonical mapping {position indicator}~βn,sE'→({position indicator}~β'n,sE)' is a metric surjection. This can be rephrased as the isometric isomorphism Qmin(E)=Q(E) for some polynomial ideal Q. We also relate the sRN property of an s-tensor norm with the Asplund or Radon-Nikodỳm properties of different tensor products. As an application, results concerning the ideal of n-homogeneous extendible polynomials are obtained, as well as a new proof of the well-known isometric isomorphism between nuclear and integral polynomials on Asplund spaces. An analogous study is carried out for full tensor products. © 2010 Elsevier Inc.
Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Galicer, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- J. Math. Anal. Appl. 2011;375(2):553-565
- Materia
-
Metric theory of tensor products
Polynomial ideals
Radon-Nikodỳm property - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_0022247X_v375_n2_p553_Carando
Ver los metadatos del registro completo
id |
BDUBAFCEN_936d4fc1df0fa1c9d0fab6ce31776866 |
---|---|
oai_identifier_str |
paperaa:paper_0022247X_v375_n2_p553_Carando |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
The symmetric Radon-Nikodỳm property for tensor normsCarando, D.Galicer, D.Metric theory of tensor productsPolynomial idealsRadon-Nikodỳm propertyWe introduce the symmetric Radon-Nikodỳm property (sRN property) for finitely generated s-tensor norms β of order n and prove a Lewis type theorem for s-tensor norms with this property. As a consequence, if β is a projective s-tensor norm with the sRN property, then for every Asplund space E, the canonical mapping {position indicator}~βn,sE'→({position indicator}~β'n,sE)' is a metric surjection. This can be rephrased as the isometric isomorphism Qmin(E)=Q(E) for some polynomial ideal Q. We also relate the sRN property of an s-tensor norm with the Asplund or Radon-Nikodỳm properties of different tensor products. As an application, results concerning the ideal of n-homogeneous extendible polynomials are obtained, as well as a new proof of the well-known isometric isomorphism between nuclear and integral polynomials on Asplund spaces. An analogous study is carried out for full tensor products. © 2010 Elsevier Inc.Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Galicer, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2011info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0022247X_v375_n2_p553_CarandoJ. Math. Anal. Appl. 2011;375(2):553-565reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-10-16T09:30:17Zpaperaa:paper_0022247X_v375_n2_p553_CarandoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-16 09:30:19.051Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
The symmetric Radon-Nikodỳm property for tensor norms |
title |
The symmetric Radon-Nikodỳm property for tensor norms |
spellingShingle |
The symmetric Radon-Nikodỳm property for tensor norms Carando, D. Metric theory of tensor products Polynomial ideals Radon-Nikodỳm property |
title_short |
The symmetric Radon-Nikodỳm property for tensor norms |
title_full |
The symmetric Radon-Nikodỳm property for tensor norms |
title_fullStr |
The symmetric Radon-Nikodỳm property for tensor norms |
title_full_unstemmed |
The symmetric Radon-Nikodỳm property for tensor norms |
title_sort |
The symmetric Radon-Nikodỳm property for tensor norms |
dc.creator.none.fl_str_mv |
Carando, D. Galicer, D. |
author |
Carando, D. |
author_facet |
Carando, D. Galicer, D. |
author_role |
author |
author2 |
Galicer, D. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Metric theory of tensor products Polynomial ideals Radon-Nikodỳm property |
topic |
Metric theory of tensor products Polynomial ideals Radon-Nikodỳm property |
dc.description.none.fl_txt_mv |
We introduce the symmetric Radon-Nikodỳm property (sRN property) for finitely generated s-tensor norms β of order n and prove a Lewis type theorem for s-tensor norms with this property. As a consequence, if β is a projective s-tensor norm with the sRN property, then for every Asplund space E, the canonical mapping {position indicator}~βn,sE'→({position indicator}~β'n,sE)' is a metric surjection. This can be rephrased as the isometric isomorphism Qmin(E)=Q(E) for some polynomial ideal Q. We also relate the sRN property of an s-tensor norm with the Asplund or Radon-Nikodỳm properties of different tensor products. As an application, results concerning the ideal of n-homogeneous extendible polynomials are obtained, as well as a new proof of the well-known isometric isomorphism between nuclear and integral polynomials on Asplund spaces. An analogous study is carried out for full tensor products. © 2010 Elsevier Inc. Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Galicer, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
We introduce the symmetric Radon-Nikodỳm property (sRN property) for finitely generated s-tensor norms β of order n and prove a Lewis type theorem for s-tensor norms with this property. As a consequence, if β is a projective s-tensor norm with the sRN property, then for every Asplund space E, the canonical mapping {position indicator}~βn,sE'→({position indicator}~β'n,sE)' is a metric surjection. This can be rephrased as the isometric isomorphism Qmin(E)=Q(E) for some polynomial ideal Q. We also relate the sRN property of an s-tensor norm with the Asplund or Radon-Nikodỳm properties of different tensor products. As an application, results concerning the ideal of n-homogeneous extendible polynomials are obtained, as well as a new proof of the well-known isometric isomorphism between nuclear and integral polynomials on Asplund spaces. An analogous study is carried out for full tensor products. © 2010 Elsevier Inc. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_0022247X_v375_n2_p553_Carando |
url |
http://hdl.handle.net/20.500.12110/paper_0022247X_v375_n2_p553_Carando |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
J. Math. Anal. Appl. 2011;375(2):553-565 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1846142849408565248 |
score |
12.712165 |