The symmetric Radon-Nikodỳm property for tensor norms

Autores
Carando, D.; Galicer, D.
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We introduce the symmetric Radon-Nikodỳm property (sRN property) for finitely generated s-tensor norms β of order n and prove a Lewis type theorem for s-tensor norms with this property. As a consequence, if β is a projective s-tensor norm with the sRN property, then for every Asplund space E, the canonical mapping {position indicator}~βn,sE'→({position indicator}~β'n,sE)' is a metric surjection. This can be rephrased as the isometric isomorphism Qmin(E)=Q(E) for some polynomial ideal Q. We also relate the sRN property of an s-tensor norm with the Asplund or Radon-Nikodỳm properties of different tensor products. As an application, results concerning the ideal of n-homogeneous extendible polynomials are obtained, as well as a new proof of the well-known isometric isomorphism between nuclear and integral polynomials on Asplund spaces. An analogous study is carried out for full tensor products. © 2010 Elsevier Inc.
Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Galicer, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fuente
J. Math. Anal. Appl. 2011;375(2):553-565
Materia
Metric theory of tensor products
Polynomial ideals
Radon-Nikodỳm property
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
paperaa:paper_0022247X_v375_n2_p553_Carando

id BDUBAFCEN_936d4fc1df0fa1c9d0fab6ce31776866
oai_identifier_str paperaa:paper_0022247X_v375_n2_p553_Carando
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling The symmetric Radon-Nikodỳm property for tensor normsCarando, D.Galicer, D.Metric theory of tensor productsPolynomial idealsRadon-Nikodỳm propertyWe introduce the symmetric Radon-Nikodỳm property (sRN property) for finitely generated s-tensor norms β of order n and prove a Lewis type theorem for s-tensor norms with this property. As a consequence, if β is a projective s-tensor norm with the sRN property, then for every Asplund space E, the canonical mapping {position indicator}~βn,sE'→({position indicator}~β'n,sE)' is a metric surjection. This can be rephrased as the isometric isomorphism Qmin(E)=Q(E) for some polynomial ideal Q. We also relate the sRN property of an s-tensor norm with the Asplund or Radon-Nikodỳm properties of different tensor products. As an application, results concerning the ideal of n-homogeneous extendible polynomials are obtained, as well as a new proof of the well-known isometric isomorphism between nuclear and integral polynomials on Asplund spaces. An analogous study is carried out for full tensor products. © 2010 Elsevier Inc.Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Galicer, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2011info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_0022247X_v375_n2_p553_CarandoJ. Math. Anal. Appl. 2011;375(2):553-565reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-10-16T09:30:17Zpaperaa:paper_0022247X_v375_n2_p553_CarandoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-16 09:30:19.051Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv The symmetric Radon-Nikodỳm property for tensor norms
title The symmetric Radon-Nikodỳm property for tensor norms
spellingShingle The symmetric Radon-Nikodỳm property for tensor norms
Carando, D.
Metric theory of tensor products
Polynomial ideals
Radon-Nikodỳm property
title_short The symmetric Radon-Nikodỳm property for tensor norms
title_full The symmetric Radon-Nikodỳm property for tensor norms
title_fullStr The symmetric Radon-Nikodỳm property for tensor norms
title_full_unstemmed The symmetric Radon-Nikodỳm property for tensor norms
title_sort The symmetric Radon-Nikodỳm property for tensor norms
dc.creator.none.fl_str_mv Carando, D.
Galicer, D.
author Carando, D.
author_facet Carando, D.
Galicer, D.
author_role author
author2 Galicer, D.
author2_role author
dc.subject.none.fl_str_mv Metric theory of tensor products
Polynomial ideals
Radon-Nikodỳm property
topic Metric theory of tensor products
Polynomial ideals
Radon-Nikodỳm property
dc.description.none.fl_txt_mv We introduce the symmetric Radon-Nikodỳm property (sRN property) for finitely generated s-tensor norms β of order n and prove a Lewis type theorem for s-tensor norms with this property. As a consequence, if β is a projective s-tensor norm with the sRN property, then for every Asplund space E, the canonical mapping {position indicator}~βn,sE'→({position indicator}~β'n,sE)' is a metric surjection. This can be rephrased as the isometric isomorphism Qmin(E)=Q(E) for some polynomial ideal Q. We also relate the sRN property of an s-tensor norm with the Asplund or Radon-Nikodỳm properties of different tensor products. As an application, results concerning the ideal of n-homogeneous extendible polynomials are obtained, as well as a new proof of the well-known isometric isomorphism between nuclear and integral polynomials on Asplund spaces. An analogous study is carried out for full tensor products. © 2010 Elsevier Inc.
Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Galicer, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description We introduce the symmetric Radon-Nikodỳm property (sRN property) for finitely generated s-tensor norms β of order n and prove a Lewis type theorem for s-tensor norms with this property. As a consequence, if β is a projective s-tensor norm with the sRN property, then for every Asplund space E, the canonical mapping {position indicator}~βn,sE'→({position indicator}~β'n,sE)' is a metric surjection. This can be rephrased as the isometric isomorphism Qmin(E)=Q(E) for some polynomial ideal Q. We also relate the sRN property of an s-tensor norm with the Asplund or Radon-Nikodỳm properties of different tensor products. As an application, results concerning the ideal of n-homogeneous extendible polynomials are obtained, as well as a new proof of the well-known isometric isomorphism between nuclear and integral polynomials on Asplund spaces. An analogous study is carried out for full tensor products. © 2010 Elsevier Inc.
publishDate 2011
dc.date.none.fl_str_mv 2011
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/20.500.12110/paper_0022247X_v375_n2_p553_Carando
url http://hdl.handle.net/20.500.12110/paper_0022247X_v375_n2_p553_Carando
dc.language.none.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv J. Math. Anal. Appl. 2011;375(2):553-565
reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1846142849408565248
score 12.712165