Local problems on stars: A posteriori error estimators, convergence, and performance

Autores
Morin, Pedro; Nochetto, Ricardo Horacio; Siebert, Kunibert G.
Año de publicación
2003
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
A new computable a posteriori error estimator is introduced, which relies on the solution of small discrete problems on stars. It exhibits built-in flux equilibration and is equivalent to the energy error up to data oscillation without any saturation assumption. A simple adaptive strategy is designed, which simultaneously reduces error and data oscillation, and is shown to converge without mesh pre-adaptation nor explicit knowledge of constants. Numerical experiments reveal a competitive performance, show extremely good effectivity indices, and yield quasi-optimal meshes.
Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Nochetto, Ricardo Horacio. University of Maryland; Estados Unidos
Fil: Siebert, Kunibert G.. Universität Heidelberg;
Materia
A POSTERIORI ERROR ESTIMATORS
ADAPTIVITY
CONVERGENCE
DATA OSCILLATION
LOCAL PROBLEMS
PERFORMANCE
STARS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/100622

id CONICETDig_49441f6155517cc4d4586354d15c395f
oai_identifier_str oai:ri.conicet.gov.ar:11336/100622
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Local problems on stars: A posteriori error estimators, convergence, and performanceMorin, PedroNochetto, Ricardo HoracioSiebert, Kunibert G.A POSTERIORI ERROR ESTIMATORSADAPTIVITYCONVERGENCEDATA OSCILLATIONLOCAL PROBLEMSPERFORMANCESTARShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A new computable a posteriori error estimator is introduced, which relies on the solution of small discrete problems on stars. It exhibits built-in flux equilibration and is equivalent to the energy error up to data oscillation without any saturation assumption. A simple adaptive strategy is designed, which simultaneously reduces error and data oscillation, and is shown to converge without mesh pre-adaptation nor explicit knowledge of constants. Numerical experiments reveal a competitive performance, show extremely good effectivity indices, and yield quasi-optimal meshes.Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Nochetto, Ricardo Horacio. University of Maryland; Estados UnidosFil: Siebert, Kunibert G.. Universität Heidelberg; American Mathematical Society2003-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/100622Morin, Pedro; Nochetto, Ricardo Horacio; Siebert, Kunibert G.; Local problems on stars: A posteriori error estimators, convergence, and performance; American Mathematical Society; Mathematics of Computation; 72; 243; 7-2003; 1067-10970025-5718CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1090/S0025-5718-02-01463-1info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:08:32Zoai:ri.conicet.gov.ar:11336/100622instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:08:32.281CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Local problems on stars: A posteriori error estimators, convergence, and performance
title Local problems on stars: A posteriori error estimators, convergence, and performance
spellingShingle Local problems on stars: A posteriori error estimators, convergence, and performance
Morin, Pedro
A POSTERIORI ERROR ESTIMATORS
ADAPTIVITY
CONVERGENCE
DATA OSCILLATION
LOCAL PROBLEMS
PERFORMANCE
STARS
title_short Local problems on stars: A posteriori error estimators, convergence, and performance
title_full Local problems on stars: A posteriori error estimators, convergence, and performance
title_fullStr Local problems on stars: A posteriori error estimators, convergence, and performance
title_full_unstemmed Local problems on stars: A posteriori error estimators, convergence, and performance
title_sort Local problems on stars: A posteriori error estimators, convergence, and performance
dc.creator.none.fl_str_mv Morin, Pedro
Nochetto, Ricardo Horacio
Siebert, Kunibert G.
author Morin, Pedro
author_facet Morin, Pedro
Nochetto, Ricardo Horacio
Siebert, Kunibert G.
author_role author
author2 Nochetto, Ricardo Horacio
Siebert, Kunibert G.
author2_role author
author
dc.subject.none.fl_str_mv A POSTERIORI ERROR ESTIMATORS
ADAPTIVITY
CONVERGENCE
DATA OSCILLATION
LOCAL PROBLEMS
PERFORMANCE
STARS
topic A POSTERIORI ERROR ESTIMATORS
ADAPTIVITY
CONVERGENCE
DATA OSCILLATION
LOCAL PROBLEMS
PERFORMANCE
STARS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv A new computable a posteriori error estimator is introduced, which relies on the solution of small discrete problems on stars. It exhibits built-in flux equilibration and is equivalent to the energy error up to data oscillation without any saturation assumption. A simple adaptive strategy is designed, which simultaneously reduces error and data oscillation, and is shown to converge without mesh pre-adaptation nor explicit knowledge of constants. Numerical experiments reveal a competitive performance, show extremely good effectivity indices, and yield quasi-optimal meshes.
Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Nochetto, Ricardo Horacio. University of Maryland; Estados Unidos
Fil: Siebert, Kunibert G.. Universität Heidelberg;
description A new computable a posteriori error estimator is introduced, which relies on the solution of small discrete problems on stars. It exhibits built-in flux equilibration and is equivalent to the energy error up to data oscillation without any saturation assumption. A simple adaptive strategy is designed, which simultaneously reduces error and data oscillation, and is shown to converge without mesh pre-adaptation nor explicit knowledge of constants. Numerical experiments reveal a competitive performance, show extremely good effectivity indices, and yield quasi-optimal meshes.
publishDate 2003
dc.date.none.fl_str_mv 2003-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/100622
Morin, Pedro; Nochetto, Ricardo Horacio; Siebert, Kunibert G.; Local problems on stars: A posteriori error estimators, convergence, and performance; American Mathematical Society; Mathematics of Computation; 72; 243; 7-2003; 1067-1097
0025-5718
CONICET Digital
CONICET
url http://hdl.handle.net/11336/100622
identifier_str_mv Morin, Pedro; Nochetto, Ricardo Horacio; Siebert, Kunibert G.; Local problems on stars: A posteriori error estimators, convergence, and performance; American Mathematical Society; Mathematics of Computation; 72; 243; 7-2003; 1067-1097
0025-5718
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1090/S0025-5718-02-01463-1
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Mathematical Society
publisher.none.fl_str_mv American Mathematical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613954126479360
score 13.070432