Convergence of Adaptive Finite Element Methods
- Autores
- Morin, Pedro; Nochetto, Ricardo Horacio; Siebert, Kunibert G.
- Año de publicación
- 2002
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Adaptive finite element methods (FEMs) have been widely used in applications for over 20 years now. In practice, they converge starting from coarse grids, although no mathematical theory has been able to prove this assertion. Ensuring an error reduction rate based on a posteriori error estimators, together with a reduction rate of data oscillation (information missed by the underlying averaging process), we construct a simple and efficient adaptive FEM for elliptic partial differential equations. We prove that this algorithm converges with linear rate without any preliminary mesh adaptation nor explicit knowledge of constants. Any prescribed error tolerance is thus achieved in a finite number of steps. A number of numerical experiments in two and three dimensions yield quasi-optimal meshes along with a competitive performance. Extensions to higher order elements and applications to saddle point problems are discussed as well.
Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Nochetto, Ricardo Horacio. University of Maryland; Estados Unidos
Fil: Siebert, Kunibert G.. Universität Heidelberg; - Materia
-
A POSTERIORI ERROR ESTIMATORS
ADAPTIVE MESH REFINEMENT
CONVERGENCE
DATA OSCILLATION
STOKES PROBLEM
UZAWA ITERATIONS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/100623
Ver los metadatos del registro completo
| id |
CONICETDig_327203c8716a1328fc82521bb5e29c80 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/100623 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Convergence of Adaptive Finite Element MethodsMorin, PedroNochetto, Ricardo HoracioSiebert, Kunibert G.A POSTERIORI ERROR ESTIMATORSADAPTIVE MESH REFINEMENTCONVERGENCEDATA OSCILLATIONSTOKES PROBLEMUZAWA ITERATIONShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Adaptive finite element methods (FEMs) have been widely used in applications for over 20 years now. In practice, they converge starting from coarse grids, although no mathematical theory has been able to prove this assertion. Ensuring an error reduction rate based on a posteriori error estimators, together with a reduction rate of data oscillation (information missed by the underlying averaging process), we construct a simple and efficient adaptive FEM for elliptic partial differential equations. We prove that this algorithm converges with linear rate without any preliminary mesh adaptation nor explicit knowledge of constants. Any prescribed error tolerance is thus achieved in a finite number of steps. A number of numerical experiments in two and three dimensions yield quasi-optimal meshes along with a competitive performance. Extensions to higher order elements and applications to saddle point problems are discussed as well.Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Nochetto, Ricardo Horacio. University of Maryland; Estados UnidosFil: Siebert, Kunibert G.. Universität Heidelberg; Society for Industrial and Applied Mathematics2002-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/100623Morin, Pedro; Nochetto, Ricardo Horacio; Siebert, Kunibert G.; Convergence of Adaptive Finite Element Methods; Society for Industrial and Applied Mathematics; Siam Review; 44; 4; 12-2002; 631-6580036-1445CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1137/S0036144502409093info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:30:03Zoai:ri.conicet.gov.ar:11336/100623instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:30:03.77CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Convergence of Adaptive Finite Element Methods |
| title |
Convergence of Adaptive Finite Element Methods |
| spellingShingle |
Convergence of Adaptive Finite Element Methods Morin, Pedro A POSTERIORI ERROR ESTIMATORS ADAPTIVE MESH REFINEMENT CONVERGENCE DATA OSCILLATION STOKES PROBLEM UZAWA ITERATIONS |
| title_short |
Convergence of Adaptive Finite Element Methods |
| title_full |
Convergence of Adaptive Finite Element Methods |
| title_fullStr |
Convergence of Adaptive Finite Element Methods |
| title_full_unstemmed |
Convergence of Adaptive Finite Element Methods |
| title_sort |
Convergence of Adaptive Finite Element Methods |
| dc.creator.none.fl_str_mv |
Morin, Pedro Nochetto, Ricardo Horacio Siebert, Kunibert G. |
| author |
Morin, Pedro |
| author_facet |
Morin, Pedro Nochetto, Ricardo Horacio Siebert, Kunibert G. |
| author_role |
author |
| author2 |
Nochetto, Ricardo Horacio Siebert, Kunibert G. |
| author2_role |
author author |
| dc.subject.none.fl_str_mv |
A POSTERIORI ERROR ESTIMATORS ADAPTIVE MESH REFINEMENT CONVERGENCE DATA OSCILLATION STOKES PROBLEM UZAWA ITERATIONS |
| topic |
A POSTERIORI ERROR ESTIMATORS ADAPTIVE MESH REFINEMENT CONVERGENCE DATA OSCILLATION STOKES PROBLEM UZAWA ITERATIONS |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Adaptive finite element methods (FEMs) have been widely used in applications for over 20 years now. In practice, they converge starting from coarse grids, although no mathematical theory has been able to prove this assertion. Ensuring an error reduction rate based on a posteriori error estimators, together with a reduction rate of data oscillation (information missed by the underlying averaging process), we construct a simple and efficient adaptive FEM for elliptic partial differential equations. We prove that this algorithm converges with linear rate without any preliminary mesh adaptation nor explicit knowledge of constants. Any prescribed error tolerance is thus achieved in a finite number of steps. A number of numerical experiments in two and three dimensions yield quasi-optimal meshes along with a competitive performance. Extensions to higher order elements and applications to saddle point problems are discussed as well. Fil: Morin, Pedro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina Fil: Nochetto, Ricardo Horacio. University of Maryland; Estados Unidos Fil: Siebert, Kunibert G.. Universität Heidelberg; |
| description |
Adaptive finite element methods (FEMs) have been widely used in applications for over 20 years now. In practice, they converge starting from coarse grids, although no mathematical theory has been able to prove this assertion. Ensuring an error reduction rate based on a posteriori error estimators, together with a reduction rate of data oscillation (information missed by the underlying averaging process), we construct a simple and efficient adaptive FEM for elliptic partial differential equations. We prove that this algorithm converges with linear rate without any preliminary mesh adaptation nor explicit knowledge of constants. Any prescribed error tolerance is thus achieved in a finite number of steps. A number of numerical experiments in two and three dimensions yield quasi-optimal meshes along with a competitive performance. Extensions to higher order elements and applications to saddle point problems are discussed as well. |
| publishDate |
2002 |
| dc.date.none.fl_str_mv |
2002-12 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/100623 Morin, Pedro; Nochetto, Ricardo Horacio; Siebert, Kunibert G.; Convergence of Adaptive Finite Element Methods; Society for Industrial and Applied Mathematics; Siam Review; 44; 4; 12-2002; 631-658 0036-1445 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/100623 |
| identifier_str_mv |
Morin, Pedro; Nochetto, Ricardo Horacio; Siebert, Kunibert G.; Convergence of Adaptive Finite Element Methods; Society for Industrial and Applied Mathematics; Siam Review; 44; 4; 12-2002; 631-658 0036-1445 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1137/S0036144502409093 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Society for Industrial and Applied Mathematics |
| publisher.none.fl_str_mv |
Society for Industrial and Applied Mathematics |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846781890917302272 |
| score |
12.982451 |