A posteriori error estimates for non-conforming approximation of eigenvalue problems
- Autores
- Dari, Enzo Alberto; Duran, Ricardo Guillermo; Padra, Claudio
- Año de publicación
- 2012
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider the approximation of eigenvalue problem for the Laplacian by the Crouzeix– Raviart non-conforming finite elements in two and three dimensions. Extending known techniques for source problems, we introduce a posteriori error estimators for eigenvectors and eigenvalues. We prove that the error estimator is equivalent to the energy norm of the eigenvector error up to higher order terms. Moreover, we prove that our estimator provides an upper bound for the error in the approximation of the first eigenvalue, also up to higher order terms. We present numerical examples of an adaptive procedure based on our error estimator in two and three dimensions. These examples show that the error in the adaptive procedure is optimal in terms of the number of degrees of freedom.
Fil: Dari, Enzo Alberto. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Duran, Ricardo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Padra, Claudio. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina - Materia
-
A POSTERIORI ERROR ESTIMATES
NON CONFORMING METHODS
EIGENVALUES - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/19935
Ver los metadatos del registro completo
id |
CONICETDig_1507ec254116b2e8ca6d46887bba7730 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/19935 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A posteriori error estimates for non-conforming approximation of eigenvalue problemsDari, Enzo AlbertoDuran, Ricardo GuillermoPadra, ClaudioA POSTERIORI ERROR ESTIMATESNON CONFORMING METHODSEIGENVALUEShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider the approximation of eigenvalue problem for the Laplacian by the Crouzeix– Raviart non-conforming finite elements in two and three dimensions. Extending known techniques for source problems, we introduce a posteriori error estimators for eigenvectors and eigenvalues. We prove that the error estimator is equivalent to the energy norm of the eigenvector error up to higher order terms. Moreover, we prove that our estimator provides an upper bound for the error in the approximation of the first eigenvalue, also up to higher order terms. We present numerical examples of an adaptive procedure based on our error estimator in two and three dimensions. These examples show that the error in the adaptive procedure is optimal in terms of the number of degrees of freedom.Fil: Dari, Enzo Alberto. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Duran, Ricardo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Padra, Claudio. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaElsevier Science2012-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/19935Dari, Enzo Alberto; Duran, Ricardo Guillermo; Padra, Claudio; A posteriori error estimates for non-conforming approximation of eigenvalue problems; Elsevier Science; Applied Numerical Mathematics; 62; 5; 5-2012; 580-5910168-9274CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1016/j.apnum.2012.01.005info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0168927412000220info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T10:47:10Zoai:ri.conicet.gov.ar:11336/19935instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 10:47:11.196CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A posteriori error estimates for non-conforming approximation of eigenvalue problems |
title |
A posteriori error estimates for non-conforming approximation of eigenvalue problems |
spellingShingle |
A posteriori error estimates for non-conforming approximation of eigenvalue problems Dari, Enzo Alberto A POSTERIORI ERROR ESTIMATES NON CONFORMING METHODS EIGENVALUES |
title_short |
A posteriori error estimates for non-conforming approximation of eigenvalue problems |
title_full |
A posteriori error estimates for non-conforming approximation of eigenvalue problems |
title_fullStr |
A posteriori error estimates for non-conforming approximation of eigenvalue problems |
title_full_unstemmed |
A posteriori error estimates for non-conforming approximation of eigenvalue problems |
title_sort |
A posteriori error estimates for non-conforming approximation of eigenvalue problems |
dc.creator.none.fl_str_mv |
Dari, Enzo Alberto Duran, Ricardo Guillermo Padra, Claudio |
author |
Dari, Enzo Alberto |
author_facet |
Dari, Enzo Alberto Duran, Ricardo Guillermo Padra, Claudio |
author_role |
author |
author2 |
Duran, Ricardo Guillermo Padra, Claudio |
author2_role |
author author |
dc.subject.none.fl_str_mv |
A POSTERIORI ERROR ESTIMATES NON CONFORMING METHODS EIGENVALUES |
topic |
A POSTERIORI ERROR ESTIMATES NON CONFORMING METHODS EIGENVALUES |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We consider the approximation of eigenvalue problem for the Laplacian by the Crouzeix– Raviart non-conforming finite elements in two and three dimensions. Extending known techniques for source problems, we introduce a posteriori error estimators for eigenvectors and eigenvalues. We prove that the error estimator is equivalent to the energy norm of the eigenvector error up to higher order terms. Moreover, we prove that our estimator provides an upper bound for the error in the approximation of the first eigenvalue, also up to higher order terms. We present numerical examples of an adaptive procedure based on our error estimator in two and three dimensions. These examples show that the error in the adaptive procedure is optimal in terms of the number of degrees of freedom. Fil: Dari, Enzo Alberto. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Duran, Ricardo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Padra, Claudio. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina |
description |
We consider the approximation of eigenvalue problem for the Laplacian by the Crouzeix– Raviart non-conforming finite elements in two and three dimensions. Extending known techniques for source problems, we introduce a posteriori error estimators for eigenvectors and eigenvalues. We prove that the error estimator is equivalent to the energy norm of the eigenvector error up to higher order terms. Moreover, we prove that our estimator provides an upper bound for the error in the approximation of the first eigenvalue, also up to higher order terms. We present numerical examples of an adaptive procedure based on our error estimator in two and three dimensions. These examples show that the error in the adaptive procedure is optimal in terms of the number of degrees of freedom. |
publishDate |
2012 |
dc.date.none.fl_str_mv |
2012-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/19935 Dari, Enzo Alberto; Duran, Ricardo Guillermo; Padra, Claudio; A posteriori error estimates for non-conforming approximation of eigenvalue problems; Elsevier Science; Applied Numerical Mathematics; 62; 5; 5-2012; 580-591 0168-9274 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/19935 |
identifier_str_mv |
Dari, Enzo Alberto; Duran, Ricardo Guillermo; Padra, Claudio; A posteriori error estimates for non-conforming approximation of eigenvalue problems; Elsevier Science; Applied Numerical Mathematics; 62; 5; 5-2012; 580-591 0168-9274 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.apnum.2012.01.005 info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0168927412000220 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606051971137536 |
score |
13.001348 |