A Posteriori Error Estimators for Hierarchical B-Spline Discretizations
- Autores
- Buffa, Annalisa; Garau, Eduardo Mario
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this paper we develop function-based a posteriori error estimators for the solution of linear second order elliptic problems considering hierarchical spline spaces for the Galerkin discretization. We obtain a global upper bound for the energy error over arbitrary hierarchical mesh configurations which simplifies the implementation of adaptive refinement strategies. The theory hinges on some weighted Poincaré type inequalities where the B-spline basis functions are the weights appearing in the norms. Such inequalities are derived following the lines in (Veeser and Verfürth, 2009), where the case of standard finite elements is considered. Additionally, we present numerical experiments that show the efficiency of the error estimators independently of the degree of the splines used for the discretization, together with an adaptive algorithm guided by these local estimators that yields optimal meshes and rates of convergence, exhibiting an excellent performance.
Fil: Buffa, Annalisa. École Polytechnique Fédérale de Lausanne; Suiza. Consiglio Nazionale Delle Ricerche. Instituto Dimatemática Applicata E Tecnologie Informatiche; Italia
Fil: Garau, Eduardo Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral; Argentina - Materia
-
A posteriori error estimators
Adaptivity
Hierarchical splines - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/89154
Ver los metadatos del registro completo
id |
CONICETDig_9d46b0147fb3d5cf54cd2c8cf55f5822 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/89154 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
A Posteriori Error Estimators for Hierarchical B-Spline DiscretizationsBuffa, AnnalisaGarau, Eduardo MarioA posteriori error estimatorsAdaptivityHierarchical splineshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1In this paper we develop function-based a posteriori error estimators for the solution of linear second order elliptic problems considering hierarchical spline spaces for the Galerkin discretization. We obtain a global upper bound for the energy error over arbitrary hierarchical mesh configurations which simplifies the implementation of adaptive refinement strategies. The theory hinges on some weighted Poincaré type inequalities where the B-spline basis functions are the weights appearing in the norms. Such inequalities are derived following the lines in (Veeser and Verfürth, 2009), where the case of standard finite elements is considered. Additionally, we present numerical experiments that show the efficiency of the error estimators independently of the degree of the splines used for the discretization, together with an adaptive algorithm guided by these local estimators that yields optimal meshes and rates of convergence, exhibiting an excellent performance.Fil: Buffa, Annalisa. École Polytechnique Fédérale de Lausanne; Suiza. Consiglio Nazionale Delle Ricerche. Instituto Dimatemática Applicata E Tecnologie Informatiche; ItaliaFil: Garau, Eduardo Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral; ArgentinaWorld Scientific2018-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/89154Buffa, Annalisa; Garau, Eduardo Mario; A Posteriori Error Estimators for Hierarchical B-Spline Discretizations; World Scientific; Mathematical Models And Methods In Applied Sciences; 28; 8; 7-2018; 1453-14800218-20251793-6314CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/worldscinet/m3asinfo:eu-repo/semantics/altIdentifier/doi/10.1142/S0218202518500392info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:12:51Zoai:ri.conicet.gov.ar:11336/89154instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:12:51.612CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
A Posteriori Error Estimators for Hierarchical B-Spline Discretizations |
title |
A Posteriori Error Estimators for Hierarchical B-Spline Discretizations |
spellingShingle |
A Posteriori Error Estimators for Hierarchical B-Spline Discretizations Buffa, Annalisa A posteriori error estimators Adaptivity Hierarchical splines |
title_short |
A Posteriori Error Estimators for Hierarchical B-Spline Discretizations |
title_full |
A Posteriori Error Estimators for Hierarchical B-Spline Discretizations |
title_fullStr |
A Posteriori Error Estimators for Hierarchical B-Spline Discretizations |
title_full_unstemmed |
A Posteriori Error Estimators for Hierarchical B-Spline Discretizations |
title_sort |
A Posteriori Error Estimators for Hierarchical B-Spline Discretizations |
dc.creator.none.fl_str_mv |
Buffa, Annalisa Garau, Eduardo Mario |
author |
Buffa, Annalisa |
author_facet |
Buffa, Annalisa Garau, Eduardo Mario |
author_role |
author |
author2 |
Garau, Eduardo Mario |
author2_role |
author |
dc.subject.none.fl_str_mv |
A posteriori error estimators Adaptivity Hierarchical splines |
topic |
A posteriori error estimators Adaptivity Hierarchical splines |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
In this paper we develop function-based a posteriori error estimators for the solution of linear second order elliptic problems considering hierarchical spline spaces for the Galerkin discretization. We obtain a global upper bound for the energy error over arbitrary hierarchical mesh configurations which simplifies the implementation of adaptive refinement strategies. The theory hinges on some weighted Poincaré type inequalities where the B-spline basis functions are the weights appearing in the norms. Such inequalities are derived following the lines in (Veeser and Verfürth, 2009), where the case of standard finite elements is considered. Additionally, we present numerical experiments that show the efficiency of the error estimators independently of the degree of the splines used for the discretization, together with an adaptive algorithm guided by these local estimators that yields optimal meshes and rates of convergence, exhibiting an excellent performance. Fil: Buffa, Annalisa. École Polytechnique Fédérale de Lausanne; Suiza. Consiglio Nazionale Delle Ricerche. Instituto Dimatemática Applicata E Tecnologie Informatiche; Italia Fil: Garau, Eduardo Mario. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral; Argentina |
description |
In this paper we develop function-based a posteriori error estimators for the solution of linear second order elliptic problems considering hierarchical spline spaces for the Galerkin discretization. We obtain a global upper bound for the energy error over arbitrary hierarchical mesh configurations which simplifies the implementation of adaptive refinement strategies. The theory hinges on some weighted Poincaré type inequalities where the B-spline basis functions are the weights appearing in the norms. Such inequalities are derived following the lines in (Veeser and Verfürth, 2009), where the case of standard finite elements is considered. Additionally, we present numerical experiments that show the efficiency of the error estimators independently of the degree of the splines used for the discretization, together with an adaptive algorithm guided by these local estimators that yields optimal meshes and rates of convergence, exhibiting an excellent performance. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/89154 Buffa, Annalisa; Garau, Eduardo Mario; A Posteriori Error Estimators for Hierarchical B-Spline Discretizations; World Scientific; Mathematical Models And Methods In Applied Sciences; 28; 8; 7-2018; 1453-1480 0218-2025 1793-6314 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/89154 |
identifier_str_mv |
Buffa, Annalisa; Garau, Eduardo Mario; A Posteriori Error Estimators for Hierarchical B-Spline Discretizations; World Scientific; Mathematical Models And Methods In Applied Sciences; 28; 8; 7-2018; 1453-1480 0218-2025 1793-6314 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.worldscientific.com/worldscinet/m3as info:eu-repo/semantics/altIdentifier/doi/10.1142/S0218202518500392 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
World Scientific |
publisher.none.fl_str_mv |
World Scientific |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846781528318672896 |
score |
12.982451 |