On nonsingular two-step nilpotent Lie algebras
- Autores
- Lauret, Jorge Ruben; Oscari, Francisco David
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A 2-step nilpotent Lie algebra n is called nonsingular if ad(X): n --> [n,n] is onto for any X not in [n,n]. We explore nonsingular algebras in several directions, including the classification problem (isomorphism invariants), the existence of canonical inner products (nilsolitons) and their automorphism groups (maximality properties). Our main tools are the moment map for certain real reductive representations, and the Pfaffian form of a 2-step algebra, which is a positive homogeneous polynomial in the nonsingular case.
Fil: Lauret, Jorge Ruben. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Oscari, Francisco David. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
nonsingular
2-step
nilpotent
Pfaffian - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/32140
Ver los metadatos del registro completo
id |
CONICETDig_452c90b0770198ad8dc4026d700cae55 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/32140 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On nonsingular two-step nilpotent Lie algebrasLauret, Jorge RubenOscari, Francisco Davidnonsingular2-stepnilpotentPfaffianhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A 2-step nilpotent Lie algebra n is called nonsingular if ad(X): n --> [n,n] is onto for any X not in [n,n]. We explore nonsingular algebras in several directions, including the classification problem (isomorphism invariants), the existence of canonical inner products (nilsolitons) and their automorphism groups (maximality properties). Our main tools are the moment map for certain real reductive representations, and the Pfaffian form of a 2-step algebra, which is a positive homogeneous polynomial in the nonsingular case.Fil: Lauret, Jorge Ruben. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Oscari, Francisco David. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaInternational Press Boston2014-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/32140Lauret, Jorge Ruben; Oscari, Francisco David; On nonsingular two-step nilpotent Lie algebras; International Press Boston; Mathematical Research Letters; 21; 12-2014; 553-5831073-2780CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1209.3060info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T09:39:36Zoai:ri.conicet.gov.ar:11336/32140instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 09:39:36.9CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On nonsingular two-step nilpotent Lie algebras |
title |
On nonsingular two-step nilpotent Lie algebras |
spellingShingle |
On nonsingular two-step nilpotent Lie algebras Lauret, Jorge Ruben nonsingular 2-step nilpotent Pfaffian |
title_short |
On nonsingular two-step nilpotent Lie algebras |
title_full |
On nonsingular two-step nilpotent Lie algebras |
title_fullStr |
On nonsingular two-step nilpotent Lie algebras |
title_full_unstemmed |
On nonsingular two-step nilpotent Lie algebras |
title_sort |
On nonsingular two-step nilpotent Lie algebras |
dc.creator.none.fl_str_mv |
Lauret, Jorge Ruben Oscari, Francisco David |
author |
Lauret, Jorge Ruben |
author_facet |
Lauret, Jorge Ruben Oscari, Francisco David |
author_role |
author |
author2 |
Oscari, Francisco David |
author2_role |
author |
dc.subject.none.fl_str_mv |
nonsingular 2-step nilpotent Pfaffian |
topic |
nonsingular 2-step nilpotent Pfaffian |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A 2-step nilpotent Lie algebra n is called nonsingular if ad(X): n --> [n,n] is onto for any X not in [n,n]. We explore nonsingular algebras in several directions, including the classification problem (isomorphism invariants), the existence of canonical inner products (nilsolitons) and their automorphism groups (maximality properties). Our main tools are the moment map for certain real reductive representations, and the Pfaffian form of a 2-step algebra, which is a positive homogeneous polynomial in the nonsingular case. Fil: Lauret, Jorge Ruben. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Oscari, Francisco David. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
A 2-step nilpotent Lie algebra n is called nonsingular if ad(X): n --> [n,n] is onto for any X not in [n,n]. We explore nonsingular algebras in several directions, including the classification problem (isomorphism invariants), the existence of canonical inner products (nilsolitons) and their automorphism groups (maximality properties). Our main tools are the moment map for certain real reductive representations, and the Pfaffian form of a 2-step algebra, which is a positive homogeneous polynomial in the nonsingular case. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/32140 Lauret, Jorge Ruben; Oscari, Francisco David; On nonsingular two-step nilpotent Lie algebras; International Press Boston; Mathematical Research Letters; 21; 12-2014; 553-583 1073-2780 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/32140 |
identifier_str_mv |
Lauret, Jorge Ruben; Oscari, Francisco David; On nonsingular two-step nilpotent Lie algebras; International Press Boston; Mathematical Research Letters; 21; 12-2014; 553-583 1073-2780 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1209.3060 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
International Press Boston |
publisher.none.fl_str_mv |
International Press Boston |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613253629476864 |
score |
13.070432 |