Lie bialgebra structures on 2-step nilpotent graph algebras

Autores
Farinati, Marco Andrés; Jancsa, Alejandra Patricia
Año de publicación
2018
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We generalize a result on the Heisenberg Lie algebra that gives restrictions to possible Lie bialgebra cobrackets on 2-step nilpotent algebras with some additional properties. For the class of 2-step nilpotent Lie algebras coming from graphs, we describe these extra properties in a very easy graph-combinatorial way. We exhibit applications for fn, the free 2-step nilpotent Lie algebra.
Fil: Farinati, Marco Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Jancsa, Alejandra Patricia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
Materia
LIE BIALGEBRAS
NILPOTENT LIE ALGEBRAS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/88585

id CONICETDig_536a430b74f28b912b2c2331ffee2120
oai_identifier_str oai:ri.conicet.gov.ar:11336/88585
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Lie bialgebra structures on 2-step nilpotent graph algebrasFarinati, Marco AndrésJancsa, Alejandra PatriciaLIE BIALGEBRASNILPOTENT LIE ALGEBRAShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We generalize a result on the Heisenberg Lie algebra that gives restrictions to possible Lie bialgebra cobrackets on 2-step nilpotent algebras with some additional properties. For the class of 2-step nilpotent Lie algebras coming from graphs, we describe these extra properties in a very easy graph-combinatorial way. We exhibit applications for fn, the free 2-step nilpotent Lie algebra.Fil: Farinati, Marco Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Jancsa, Alejandra Patricia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaAcademic Press Inc Elsevier Science2018-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88585Farinati, Marco Andrés; Jancsa, Alejandra Patricia; Lie bialgebra structures on 2-step nilpotent graph algebras; Academic Press Inc Elsevier Science; Journal of Algebra; 505; 7-2018; 70-910021-8693CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869318301625info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2018.03.003info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:43:26Zoai:ri.conicet.gov.ar:11336/88585instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:43:27.288CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Lie bialgebra structures on 2-step nilpotent graph algebras
title Lie bialgebra structures on 2-step nilpotent graph algebras
spellingShingle Lie bialgebra structures on 2-step nilpotent graph algebras
Farinati, Marco Andrés
LIE BIALGEBRAS
NILPOTENT LIE ALGEBRAS
title_short Lie bialgebra structures on 2-step nilpotent graph algebras
title_full Lie bialgebra structures on 2-step nilpotent graph algebras
title_fullStr Lie bialgebra structures on 2-step nilpotent graph algebras
title_full_unstemmed Lie bialgebra structures on 2-step nilpotent graph algebras
title_sort Lie bialgebra structures on 2-step nilpotent graph algebras
dc.creator.none.fl_str_mv Farinati, Marco Andrés
Jancsa, Alejandra Patricia
author Farinati, Marco Andrés
author_facet Farinati, Marco Andrés
Jancsa, Alejandra Patricia
author_role author
author2 Jancsa, Alejandra Patricia
author2_role author
dc.subject.none.fl_str_mv LIE BIALGEBRAS
NILPOTENT LIE ALGEBRAS
topic LIE BIALGEBRAS
NILPOTENT LIE ALGEBRAS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We generalize a result on the Heisenberg Lie algebra that gives restrictions to possible Lie bialgebra cobrackets on 2-step nilpotent algebras with some additional properties. For the class of 2-step nilpotent Lie algebras coming from graphs, we describe these extra properties in a very easy graph-combinatorial way. We exhibit applications for fn, the free 2-step nilpotent Lie algebra.
Fil: Farinati, Marco Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Jancsa, Alejandra Patricia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina
description We generalize a result on the Heisenberg Lie algebra that gives restrictions to possible Lie bialgebra cobrackets on 2-step nilpotent algebras with some additional properties. For the class of 2-step nilpotent Lie algebras coming from graphs, we describe these extra properties in a very easy graph-combinatorial way. We exhibit applications for fn, the free 2-step nilpotent Lie algebra.
publishDate 2018
dc.date.none.fl_str_mv 2018-07
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/88585
Farinati, Marco Andrés; Jancsa, Alejandra Patricia; Lie bialgebra structures on 2-step nilpotent graph algebras; Academic Press Inc Elsevier Science; Journal of Algebra; 505; 7-2018; 70-91
0021-8693
CONICET Digital
CONICET
url http://hdl.handle.net/11336/88585
identifier_str_mv Farinati, Marco Andrés; Jancsa, Alejandra Patricia; Lie bialgebra structures on 2-step nilpotent graph algebras; Academic Press Inc Elsevier Science; Journal of Algebra; 505; 7-2018; 70-91
0021-8693
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869318301625
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2018.03.003
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Academic Press Inc Elsevier Science
publisher.none.fl_str_mv Academic Press Inc Elsevier Science
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842268603092566016
score 13.13397