Lie bialgebra structures on 2-step nilpotent graph algebras
- Autores
- Farinati, Marco Andrés; Jancsa, Alejandra Patricia
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We generalize a result on the Heisenberg Lie algebra that gives restrictions to possible Lie bialgebra cobrackets on 2-step nilpotent algebras with some additional properties. For the class of 2-step nilpotent Lie algebras coming from graphs, we describe these extra properties in a very easy graph-combinatorial way. We exhibit applications for fn, the free 2-step nilpotent Lie algebra.
Fil: Farinati, Marco Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Jancsa, Alejandra Patricia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina - Materia
-
LIE BIALGEBRAS
NILPOTENT LIE ALGEBRAS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/88585
Ver los metadatos del registro completo
id |
CONICETDig_536a430b74f28b912b2c2331ffee2120 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/88585 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Lie bialgebra structures on 2-step nilpotent graph algebrasFarinati, Marco AndrésJancsa, Alejandra PatriciaLIE BIALGEBRASNILPOTENT LIE ALGEBRAShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We generalize a result on the Heisenberg Lie algebra that gives restrictions to possible Lie bialgebra cobrackets on 2-step nilpotent algebras with some additional properties. For the class of 2-step nilpotent Lie algebras coming from graphs, we describe these extra properties in a very easy graph-combinatorial way. We exhibit applications for fn, the free 2-step nilpotent Lie algebra.Fil: Farinati, Marco Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Jancsa, Alejandra Patricia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaAcademic Press Inc Elsevier Science2018-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/88585Farinati, Marco Andrés; Jancsa, Alejandra Patricia; Lie bialgebra structures on 2-step nilpotent graph algebras; Academic Press Inc Elsevier Science; Journal of Algebra; 505; 7-2018; 70-910021-8693CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869318301625info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2018.03.003info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:43:26Zoai:ri.conicet.gov.ar:11336/88585instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:43:27.288CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Lie bialgebra structures on 2-step nilpotent graph algebras |
title |
Lie bialgebra structures on 2-step nilpotent graph algebras |
spellingShingle |
Lie bialgebra structures on 2-step nilpotent graph algebras Farinati, Marco Andrés LIE BIALGEBRAS NILPOTENT LIE ALGEBRAS |
title_short |
Lie bialgebra structures on 2-step nilpotent graph algebras |
title_full |
Lie bialgebra structures on 2-step nilpotent graph algebras |
title_fullStr |
Lie bialgebra structures on 2-step nilpotent graph algebras |
title_full_unstemmed |
Lie bialgebra structures on 2-step nilpotent graph algebras |
title_sort |
Lie bialgebra structures on 2-step nilpotent graph algebras |
dc.creator.none.fl_str_mv |
Farinati, Marco Andrés Jancsa, Alejandra Patricia |
author |
Farinati, Marco Andrés |
author_facet |
Farinati, Marco Andrés Jancsa, Alejandra Patricia |
author_role |
author |
author2 |
Jancsa, Alejandra Patricia |
author2_role |
author |
dc.subject.none.fl_str_mv |
LIE BIALGEBRAS NILPOTENT LIE ALGEBRAS |
topic |
LIE BIALGEBRAS NILPOTENT LIE ALGEBRAS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We generalize a result on the Heisenberg Lie algebra that gives restrictions to possible Lie bialgebra cobrackets on 2-step nilpotent algebras with some additional properties. For the class of 2-step nilpotent Lie algebras coming from graphs, we describe these extra properties in a very easy graph-combinatorial way. We exhibit applications for fn, the free 2-step nilpotent Lie algebra. Fil: Farinati, Marco Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Jancsa, Alejandra Patricia. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina |
description |
We generalize a result on the Heisenberg Lie algebra that gives restrictions to possible Lie bialgebra cobrackets on 2-step nilpotent algebras with some additional properties. For the class of 2-step nilpotent Lie algebras coming from graphs, we describe these extra properties in a very easy graph-combinatorial way. We exhibit applications for fn, the free 2-step nilpotent Lie algebra. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/88585 Farinati, Marco Andrés; Jancsa, Alejandra Patricia; Lie bialgebra structures on 2-step nilpotent graph algebras; Academic Press Inc Elsevier Science; Journal of Algebra; 505; 7-2018; 70-91 0021-8693 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/88585 |
identifier_str_mv |
Farinati, Marco Andrés; Jancsa, Alejandra Patricia; Lie bialgebra structures on 2-step nilpotent graph algebras; Academic Press Inc Elsevier Science; Journal of Algebra; 505; 7-2018; 70-91 0021-8693 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0021869318301625 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.jalgebra.2018.03.003 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
publisher.none.fl_str_mv |
Academic Press Inc Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268603092566016 |
score |
13.13397 |