Naturally reductive pseudo-riemannian 2-step nilpotent lie groups

Autores
Ovando, Gabriela Paola
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
This paper deals with naturally reductive pseudo-Riemannian 2- step nilpotent Lie groups for which the metric is invariant under a left action. The case of nondegenerate center is characterized as follows. The simply connected Lie group can be constructed starting from a real representation of a certain Lie algebra which carries an ad-invariant metric. Also a naturally reductive homogeneous structure is given and applications are shown.
Fil: Ovando, Gabriela Paola. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario; Argentina
Materia
Naturally Reductive Pseudo-Riemannian
2-Step Nilpotent
Isometry Groups
Representations
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/21667

id CONICETDig_c46e2298dee346a0b47158539eafb788
oai_identifier_str oai:ri.conicet.gov.ar:11336/21667
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Naturally reductive pseudo-riemannian 2-step nilpotent lie groupsOvando, Gabriela PaolaNaturally Reductive Pseudo-Riemannian2-Step NilpotentIsometry GroupsRepresentationshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1This paper deals with naturally reductive pseudo-Riemannian 2- step nilpotent Lie groups for which the metric is invariant under a left action. The case of nondegenerate center is characterized as follows. The simply connected Lie group can be constructed starting from a real representation of a certain Lie algebra which carries an ad-invariant metric. Also a naturally reductive homogeneous structure is given and applications are shown.Fil: Ovando, Gabriela Paola. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario; ArgentinaUniversity of Houston2013-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/21667Ovando, Gabriela Paola; Naturally reductive pseudo-riemannian 2-step nilpotent lie groups; University of Houston; Houston Journal Of Mathematics; 39; 1; 1-2013; 147-1680362-1588CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0911.4067info:eu-repo/semantics/altIdentifier/url/https://www.math.uh.edu/~hjm/Vol39-1.htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:40:01Zoai:ri.conicet.gov.ar:11336/21667instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:40:02.088CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Naturally reductive pseudo-riemannian 2-step nilpotent lie groups
title Naturally reductive pseudo-riemannian 2-step nilpotent lie groups
spellingShingle Naturally reductive pseudo-riemannian 2-step nilpotent lie groups
Ovando, Gabriela Paola
Naturally Reductive Pseudo-Riemannian
2-Step Nilpotent
Isometry Groups
Representations
title_short Naturally reductive pseudo-riemannian 2-step nilpotent lie groups
title_full Naturally reductive pseudo-riemannian 2-step nilpotent lie groups
title_fullStr Naturally reductive pseudo-riemannian 2-step nilpotent lie groups
title_full_unstemmed Naturally reductive pseudo-riemannian 2-step nilpotent lie groups
title_sort Naturally reductive pseudo-riemannian 2-step nilpotent lie groups
dc.creator.none.fl_str_mv Ovando, Gabriela Paola
author Ovando, Gabriela Paola
author_facet Ovando, Gabriela Paola
author_role author
dc.subject.none.fl_str_mv Naturally Reductive Pseudo-Riemannian
2-Step Nilpotent
Isometry Groups
Representations
topic Naturally Reductive Pseudo-Riemannian
2-Step Nilpotent
Isometry Groups
Representations
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv This paper deals with naturally reductive pseudo-Riemannian 2- step nilpotent Lie groups for which the metric is invariant under a left action. The case of nondegenerate center is characterized as follows. The simply connected Lie group can be constructed starting from a real representation of a certain Lie algebra which carries an ad-invariant metric. Also a naturally reductive homogeneous structure is given and applications are shown.
Fil: Ovando, Gabriela Paola. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario; Argentina
description This paper deals with naturally reductive pseudo-Riemannian 2- step nilpotent Lie groups for which the metric is invariant under a left action. The case of nondegenerate center is characterized as follows. The simply connected Lie group can be constructed starting from a real representation of a certain Lie algebra which carries an ad-invariant metric. Also a naturally reductive homogeneous structure is given and applications are shown.
publishDate 2013
dc.date.none.fl_str_mv 2013-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/21667
Ovando, Gabriela Paola; Naturally reductive pseudo-riemannian 2-step nilpotent lie groups; University of Houston; Houston Journal Of Mathematics; 39; 1; 1-2013; 147-168
0362-1588
CONICET Digital
CONICET
url http://hdl.handle.net/11336/21667
identifier_str_mv Ovando, Gabriela Paola; Naturally reductive pseudo-riemannian 2-step nilpotent lie groups; University of Houston; Houston Journal Of Mathematics; 39; 1; 1-2013; 147-168
0362-1588
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/0911.4067
info:eu-repo/semantics/altIdentifier/url/https://www.math.uh.edu/~hjm/Vol39-1.html
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv University of Houston
publisher.none.fl_str_mv University of Houston
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844614427203076096
score 13.070432