Quasi-Kähler Chern-flat manifolds and complex 2-step nilpotent Lie algebras

Autores
Di Scala, Antonio J.; Lauret, Jorge Ruben; Vezzoni, Luigi
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
The study of quasi-K"ahler Chern-flat almost Hermitian manifolds is strictly related to the study of anti-bi-invariant almost complex Lie algebras.In the present paper we show that quasi-K"ahler Chern-flat almost Hermitian structures on compact manifolds are in correspondence tocomplex parallelisable Hermitian structures satisfying the second Gray identity.From an algebraic point of view this correspondence reads as a natural correspondence betweenanti-bi-invariant almost complex structures on Lie algebras to bi-invariant complex structures.Some natural algebraic problems are approached and some exotic examples are carefully described.
Fil: Di Scala, Antonio J.. No especifíca;
Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Vezzoni, Luigi. No especifíca;
Materia
2-step nilpotent
Chern-flat
complex structures
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/199848

id CONICETDig_7701474aef28a53a36bc076dd1c097b1
oai_identifier_str oai:ri.conicet.gov.ar:11336/199848
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Quasi-Kähler Chern-flat manifolds and complex 2-step nilpotent Lie algebrasDi Scala, Antonio J.Lauret, Jorge RubenVezzoni, Luigi2-step nilpotentChern-flatcomplex structureshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1The study of quasi-K"ahler Chern-flat almost Hermitian manifolds is strictly related to the study of anti-bi-invariant almost complex Lie algebras.In the present paper we show that quasi-K"ahler Chern-flat almost Hermitian structures on compact manifolds are in correspondence tocomplex parallelisable Hermitian structures satisfying the second Gray identity.From an algebraic point of view this correspondence reads as a natural correspondence betweenanti-bi-invariant almost complex structures on Lie algebras to bi-invariant complex structures.Some natural algebraic problems are approached and some exotic examples are carefully described.Fil: Di Scala, Antonio J.. No especifíca;Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Vezzoni, Luigi. No especifíca;Scuola Normale Superiore2012-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/199848Di Scala, Antonio J.; Lauret, Jorge Ruben; Vezzoni, Luigi; Quasi-Kähler Chern-flat manifolds and complex 2-step nilpotent Lie algebras; Scuola Normale Superiore; Annali Della Scuola Normale Superiore Di Pisa Cl. Di Scienze - Iv; 11; 10-2012; 41-600391-173XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://journals.sns.it/index.php/annaliscienze/article/view/256info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:09:35Zoai:ri.conicet.gov.ar:11336/199848instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:09:36.262CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Quasi-Kähler Chern-flat manifolds and complex 2-step nilpotent Lie algebras
title Quasi-Kähler Chern-flat manifolds and complex 2-step nilpotent Lie algebras
spellingShingle Quasi-Kähler Chern-flat manifolds and complex 2-step nilpotent Lie algebras
Di Scala, Antonio J.
2-step nilpotent
Chern-flat
complex structures
title_short Quasi-Kähler Chern-flat manifolds and complex 2-step nilpotent Lie algebras
title_full Quasi-Kähler Chern-flat manifolds and complex 2-step nilpotent Lie algebras
title_fullStr Quasi-Kähler Chern-flat manifolds and complex 2-step nilpotent Lie algebras
title_full_unstemmed Quasi-Kähler Chern-flat manifolds and complex 2-step nilpotent Lie algebras
title_sort Quasi-Kähler Chern-flat manifolds and complex 2-step nilpotent Lie algebras
dc.creator.none.fl_str_mv Di Scala, Antonio J.
Lauret, Jorge Ruben
Vezzoni, Luigi
author Di Scala, Antonio J.
author_facet Di Scala, Antonio J.
Lauret, Jorge Ruben
Vezzoni, Luigi
author_role author
author2 Lauret, Jorge Ruben
Vezzoni, Luigi
author2_role author
author
dc.subject.none.fl_str_mv 2-step nilpotent
Chern-flat
complex structures
topic 2-step nilpotent
Chern-flat
complex structures
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv The study of quasi-K"ahler Chern-flat almost Hermitian manifolds is strictly related to the study of anti-bi-invariant almost complex Lie algebras.In the present paper we show that quasi-K"ahler Chern-flat almost Hermitian structures on compact manifolds are in correspondence tocomplex parallelisable Hermitian structures satisfying the second Gray identity.From an algebraic point of view this correspondence reads as a natural correspondence betweenanti-bi-invariant almost complex structures on Lie algebras to bi-invariant complex structures.Some natural algebraic problems are approached and some exotic examples are carefully described.
Fil: Di Scala, Antonio J.. No especifíca;
Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Vezzoni, Luigi. No especifíca;
description The study of quasi-K"ahler Chern-flat almost Hermitian manifolds is strictly related to the study of anti-bi-invariant almost complex Lie algebras.In the present paper we show that quasi-K"ahler Chern-flat almost Hermitian structures on compact manifolds are in correspondence tocomplex parallelisable Hermitian structures satisfying the second Gray identity.From an algebraic point of view this correspondence reads as a natural correspondence betweenanti-bi-invariant almost complex structures on Lie algebras to bi-invariant complex structures.Some natural algebraic problems are approached and some exotic examples are carefully described.
publishDate 2012
dc.date.none.fl_str_mv 2012-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/199848
Di Scala, Antonio J.; Lauret, Jorge Ruben; Vezzoni, Luigi; Quasi-Kähler Chern-flat manifolds and complex 2-step nilpotent Lie algebras; Scuola Normale Superiore; Annali Della Scuola Normale Superiore Di Pisa Cl. Di Scienze - Iv; 11; 10-2012; 41-60
0391-173X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/199848
identifier_str_mv Di Scala, Antonio J.; Lauret, Jorge Ruben; Vezzoni, Luigi; Quasi-Kähler Chern-flat manifolds and complex 2-step nilpotent Lie algebras; Scuola Normale Superiore; Annali Della Scuola Normale Superiore Di Pisa Cl. Di Scienze - Iv; 11; 10-2012; 41-60
0391-173X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://journals.sns.it/index.php/annaliscienze/article/view/256
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Scuola Normale Superiore
publisher.none.fl_str_mv Scuola Normale Superiore
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1844613976379359232
score 13.070432