Extending polynomials in maximal and minimal ideals
- Autores
- Carando, D.; Galicer, D.
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Given a homogeneous polynomial on a Banach space E belonging to some maximal or minimal polynomial ideal, we consider its iterated extension to an ultrapower of E and prove that this extension remains in the ideal and has the same ideal norm. As a consequence, we show that the Aron-Berner extension is a well defined isometry for any maximal or minimal ideal of homogeneous polynomials. This allows us to obtain symmetric versions of some basic results of the metric theory of tensor products. © 2010 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.
Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Fil:Galicer, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. - Fuente
- Publ. Res. Inst. Math. Sci. 2010;46(3):669-680
- Materia
-
Extension of polynomials
Polynomial ideals
Symmetric tensor products of banach spaces - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by/2.5/ar
- Repositorio
- Institución
- Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
- OAI Identificador
- paperaa:paper_00345318_v46_n3_p669_Carando
Ver los metadatos del registro completo
id |
BDUBAFCEN_d0e1d9e2cb52cb728b47b8a0fe6fc6c0 |
---|---|
oai_identifier_str |
paperaa:paper_00345318_v46_n3_p669_Carando |
network_acronym_str |
BDUBAFCEN |
repository_id_str |
1896 |
network_name_str |
Biblioteca Digital (UBA-FCEN) |
spelling |
Extending polynomials in maximal and minimal idealsCarando, D.Galicer, D.Extension of polynomialsPolynomial idealsSymmetric tensor products of banach spacesGiven a homogeneous polynomial on a Banach space E belonging to some maximal or minimal polynomial ideal, we consider its iterated extension to an ultrapower of E and prove that this extension remains in the ideal and has the same ideal norm. As a consequence, we show that the Aron-Berner extension is a well defined isometry for any maximal or minimal ideal of homogeneous polynomials. This allows us to obtain symmetric versions of some basic results of the metric theory of tensor products. © 2010 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Galicer, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.2010info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfhttp://hdl.handle.net/20.500.12110/paper_00345318_v46_n3_p669_CarandoPubl. Res. Inst. Math. Sci. 2010;46(3):669-680reponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCENenginfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/ar2025-09-29T13:43:00Zpaperaa:paper_00345318_v46_n3_p669_CarandoInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-09-29 13:43:01.904Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse |
dc.title.none.fl_str_mv |
Extending polynomials in maximal and minimal ideals |
title |
Extending polynomials in maximal and minimal ideals |
spellingShingle |
Extending polynomials in maximal and minimal ideals Carando, D. Extension of polynomials Polynomial ideals Symmetric tensor products of banach spaces |
title_short |
Extending polynomials in maximal and minimal ideals |
title_full |
Extending polynomials in maximal and minimal ideals |
title_fullStr |
Extending polynomials in maximal and minimal ideals |
title_full_unstemmed |
Extending polynomials in maximal and minimal ideals |
title_sort |
Extending polynomials in maximal and minimal ideals |
dc.creator.none.fl_str_mv |
Carando, D. Galicer, D. |
author |
Carando, D. |
author_facet |
Carando, D. Galicer, D. |
author_role |
author |
author2 |
Galicer, D. |
author2_role |
author |
dc.subject.none.fl_str_mv |
Extension of polynomials Polynomial ideals Symmetric tensor products of banach spaces |
topic |
Extension of polynomials Polynomial ideals Symmetric tensor products of banach spaces |
dc.description.none.fl_txt_mv |
Given a homogeneous polynomial on a Banach space E belonging to some maximal or minimal polynomial ideal, we consider its iterated extension to an ultrapower of E and prove that this extension remains in the ideal and has the same ideal norm. As a consequence, we show that the Aron-Berner extension is a well defined isometry for any maximal or minimal ideal of homogeneous polynomials. This allows us to obtain symmetric versions of some basic results of the metric theory of tensor products. © 2010 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved. Fil:Carando, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. Fil:Galicer, D. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina. |
description |
Given a homogeneous polynomial on a Banach space E belonging to some maximal or minimal polynomial ideal, we consider its iterated extension to an ultrapower of E and prove that this extension remains in the ideal and has the same ideal norm. As a consequence, we show that the Aron-Berner extension is a well defined isometry for any maximal or minimal ideal of homogeneous polynomials. This allows us to obtain symmetric versions of some basic results of the metric theory of tensor products. © 2010 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/20.500.12110/paper_00345318_v46_n3_p669_Carando |
url |
http://hdl.handle.net/20.500.12110/paper_00345318_v46_n3_p669_Carando |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by/2.5/ar |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/ar |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
Publ. Res. Inst. Math. Sci. 2010;46(3):669-680 reponame:Biblioteca Digital (UBA-FCEN) instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales instacron:UBA-FCEN |
reponame_str |
Biblioteca Digital (UBA-FCEN) |
collection |
Biblioteca Digital (UBA-FCEN) |
instname_str |
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
instacron_str |
UBA-FCEN |
institution |
UBA-FCEN |
repository.name.fl_str_mv |
Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales |
repository.mail.fl_str_mv |
ana@bl.fcen.uba.ar |
_version_ |
1844618737644208128 |
score |
13.070432 |