A posteriori error analysis for optimization with PDE constraints
- Autores
- Gaspoz, Fernando Daniel; Kreuzer, Christian; Veeser, Andreas; Wollner, Winnifried
- Año de publicación
- 2025
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We consider finite element solutions to optimization problems, where the state depends on the possibly constrained control through a linear partial differential equation. Basing upon a reduced and rescaled optimality system, we derive a posteriori bounds capturing the approximation of the state, the adjoint state, the control and the observation. The upper and lower bounds show a gap, which grows with decreasing cost or Tikhonov regularization parameter. This growth is mitigated compared to previous results and can be countered by refinement if control and observation involve compact operators. Numerical results illustrate these properties for model problems with distributed and boundary control.
Fil: Gaspoz, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina
Fil: Kreuzer, Christian. Universität Dortmund; Alemania
Fil: Veeser, Andreas. Università degli Studi di Milano; Italia
Fil: Wollner, Winnifried. Universitat Hamburg; Alemania - Materia
-
CONTROL
FINITE ELEMENTS
ADAPTIVITY
OPTIMIZATION - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/272429
Ver los metadatos del registro completo
| id |
CONICETDig_4277a573daa601a3c6cc0ed8f1e55a28 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/272429 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
A posteriori error analysis for optimization with PDE constraintsGaspoz, Fernando DanielKreuzer, ChristianVeeser, AndreasWollner, WinnifriedCONTROLFINITE ELEMENTSADAPTIVITYOPTIMIZATIONhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We consider finite element solutions to optimization problems, where the state depends on the possibly constrained control through a linear partial differential equation. Basing upon a reduced and rescaled optimality system, we derive a posteriori bounds capturing the approximation of the state, the adjoint state, the control and the observation. The upper and lower bounds show a gap, which grows with decreasing cost or Tikhonov regularization parameter. This growth is mitigated compared to previous results and can be countered by refinement if control and observation involve compact operators. Numerical results illustrate these properties for model problems with distributed and boundary control.Fil: Gaspoz, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; ArgentinaFil: Kreuzer, Christian. Universität Dortmund; AlemaniaFil: Veeser, Andreas. Università degli Studi di Milano; ItaliaFil: Wollner, Winnifried. Universitat Hamburg; AlemaniaAmerican Institute of Mathematical Sciences2025-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/272429Gaspoz, Fernando Daniel; Kreuzer, Christian; Veeser, Andreas; Wollner, Winnifried; A posteriori error analysis for optimization with PDE constraints; American Institute of Mathematical Sciences; Mathematical Control and Related Fields; 15; 4; 12-2025; 1346-13752156-84722156-8499CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.aimsciences.org//article/doi/10.3934/mcrf.2025042info:eu-repo/semantics/altIdentifier/doi/10.3934/mcrf.2025042info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-29T12:25:34Zoai:ri.conicet.gov.ar:11336/272429instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-29 12:25:35.075CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
A posteriori error analysis for optimization with PDE constraints |
| title |
A posteriori error analysis for optimization with PDE constraints |
| spellingShingle |
A posteriori error analysis for optimization with PDE constraints Gaspoz, Fernando Daniel CONTROL FINITE ELEMENTS ADAPTIVITY OPTIMIZATION |
| title_short |
A posteriori error analysis for optimization with PDE constraints |
| title_full |
A posteriori error analysis for optimization with PDE constraints |
| title_fullStr |
A posteriori error analysis for optimization with PDE constraints |
| title_full_unstemmed |
A posteriori error analysis for optimization with PDE constraints |
| title_sort |
A posteriori error analysis for optimization with PDE constraints |
| dc.creator.none.fl_str_mv |
Gaspoz, Fernando Daniel Kreuzer, Christian Veeser, Andreas Wollner, Winnifried |
| author |
Gaspoz, Fernando Daniel |
| author_facet |
Gaspoz, Fernando Daniel Kreuzer, Christian Veeser, Andreas Wollner, Winnifried |
| author_role |
author |
| author2 |
Kreuzer, Christian Veeser, Andreas Wollner, Winnifried |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
CONTROL FINITE ELEMENTS ADAPTIVITY OPTIMIZATION |
| topic |
CONTROL FINITE ELEMENTS ADAPTIVITY OPTIMIZATION |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
We consider finite element solutions to optimization problems, where the state depends on the possibly constrained control through a linear partial differential equation. Basing upon a reduced and rescaled optimality system, we derive a posteriori bounds capturing the approximation of the state, the adjoint state, the control and the observation. The upper and lower bounds show a gap, which grows with decreasing cost or Tikhonov regularization parameter. This growth is mitigated compared to previous results and can be countered by refinement if control and observation involve compact operators. Numerical results illustrate these properties for model problems with distributed and boundary control. Fil: Gaspoz, Fernando Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe; Argentina. Universidad Nacional del Litoral. Facultad de Ingeniería Química; Argentina Fil: Kreuzer, Christian. Universität Dortmund; Alemania Fil: Veeser, Andreas. Università degli Studi di Milano; Italia Fil: Wollner, Winnifried. Universitat Hamburg; Alemania |
| description |
We consider finite element solutions to optimization problems, where the state depends on the possibly constrained control through a linear partial differential equation. Basing upon a reduced and rescaled optimality system, we derive a posteriori bounds capturing the approximation of the state, the adjoint state, the control and the observation. The upper and lower bounds show a gap, which grows with decreasing cost or Tikhonov regularization parameter. This growth is mitigated compared to previous results and can be countered by refinement if control and observation involve compact operators. Numerical results illustrate these properties for model problems with distributed and boundary control. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-12 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/272429 Gaspoz, Fernando Daniel; Kreuzer, Christian; Veeser, Andreas; Wollner, Winnifried; A posteriori error analysis for optimization with PDE constraints; American Institute of Mathematical Sciences; Mathematical Control and Related Fields; 15; 4; 12-2025; 1346-1375 2156-8472 2156-8499 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/272429 |
| identifier_str_mv |
Gaspoz, Fernando Daniel; Kreuzer, Christian; Veeser, Andreas; Wollner, Winnifried; A posteriori error analysis for optimization with PDE constraints; American Institute of Mathematical Sciences; Mathematical Control and Related Fields; 15; 4; 12-2025; 1346-1375 2156-8472 2156-8499 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.aimsciences.org//article/doi/10.3934/mcrf.2025042 info:eu-repo/semantics/altIdentifier/doi/10.3934/mcrf.2025042 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Institute of Mathematical Sciences |
| publisher.none.fl_str_mv |
American Institute of Mathematical Sciences |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1847427167628034048 |
| score |
12.589754 |