Adaptive finite element method for shape optimization

Autores
Morin, Pedro; Nochetto, Ricardo Horacio; Pauletti, Miguel Sebastian; Verani, Marco
Año de publicación
2012
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We examine shape optimization problems in the context of inexact sequential quadratic programming. Inexactness is a consequence of using adaptive finite element methods (AFEM) to approximate the state and adjoint equations (via the dual weighted residual method), update the boundary, and compute the geometric functional. We present a novel algorithm that equidistributes the errors due to shape optimization and discretization, thereby leading to coarse resolution in the early stages and fine resolution upon convergence, and thus optimizing the computational effort. We discuss the ability of the algorithm to detect whether or not geometric singularities such as corners are genuine to the problem or simply due to lack of resolution - a new paradigm in adaptivity.
Fil: Morin, Pedro. Universidad Nacional del Litoral; Argentina
Fil: Nochetto, Ricardo Horacio. University of Maryland; Estados Unidos
Fil: Pauletti, Miguel Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Verani, Marco. Politecnico di Milano; Italia
Materia
ADAPTIVITY
MESH REFINEMENT/COARSENING
SHAPE OPTIMIZATION
SMOOTHING
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/67965

id CONICETDig_270bb5e02b28db75eed4371d36a87088
oai_identifier_str oai:ri.conicet.gov.ar:11336/67965
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Adaptive finite element method for shape optimizationMorin, PedroNochetto, Ricardo HoracioPauletti, Miguel SebastianVerani, MarcoADAPTIVITYMESH REFINEMENT/COARSENINGSHAPE OPTIMIZATIONSMOOTHINGhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We examine shape optimization problems in the context of inexact sequential quadratic programming. Inexactness is a consequence of using adaptive finite element methods (AFEM) to approximate the state and adjoint equations (via the dual weighted residual method), update the boundary, and compute the geometric functional. We present a novel algorithm that equidistributes the errors due to shape optimization and discretization, thereby leading to coarse resolution in the early stages and fine resolution upon convergence, and thus optimizing the computational effort. We discuss the ability of the algorithm to detect whether or not geometric singularities such as corners are genuine to the problem or simply due to lack of resolution - a new paradigm in adaptivity.Fil: Morin, Pedro. Universidad Nacional del Litoral; ArgentinaFil: Nochetto, Ricardo Horacio. University of Maryland; Estados UnidosFil: Pauletti, Miguel Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; ArgentinaFil: Verani, Marco. Politecnico di Milano; ItaliaCambridge University Press2012-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/67965Morin, Pedro; Nochetto, Ricardo Horacio; Pauletti, Miguel Sebastian; Verani, Marco; Adaptive finite element method for shape optimization; Cambridge University Press; Esaim. Cocv; 18; 4; 10-2012; 1122-11491292-8119CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1051/cocv/2011192info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:43:05Zoai:ri.conicet.gov.ar:11336/67965instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:43:05.703CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Adaptive finite element method for shape optimization
title Adaptive finite element method for shape optimization
spellingShingle Adaptive finite element method for shape optimization
Morin, Pedro
ADAPTIVITY
MESH REFINEMENT/COARSENING
SHAPE OPTIMIZATION
SMOOTHING
title_short Adaptive finite element method for shape optimization
title_full Adaptive finite element method for shape optimization
title_fullStr Adaptive finite element method for shape optimization
title_full_unstemmed Adaptive finite element method for shape optimization
title_sort Adaptive finite element method for shape optimization
dc.creator.none.fl_str_mv Morin, Pedro
Nochetto, Ricardo Horacio
Pauletti, Miguel Sebastian
Verani, Marco
author Morin, Pedro
author_facet Morin, Pedro
Nochetto, Ricardo Horacio
Pauletti, Miguel Sebastian
Verani, Marco
author_role author
author2 Nochetto, Ricardo Horacio
Pauletti, Miguel Sebastian
Verani, Marco
author2_role author
author
author
dc.subject.none.fl_str_mv ADAPTIVITY
MESH REFINEMENT/COARSENING
SHAPE OPTIMIZATION
SMOOTHING
topic ADAPTIVITY
MESH REFINEMENT/COARSENING
SHAPE OPTIMIZATION
SMOOTHING
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We examine shape optimization problems in the context of inexact sequential quadratic programming. Inexactness is a consequence of using adaptive finite element methods (AFEM) to approximate the state and adjoint equations (via the dual weighted residual method), update the boundary, and compute the geometric functional. We present a novel algorithm that equidistributes the errors due to shape optimization and discretization, thereby leading to coarse resolution in the early stages and fine resolution upon convergence, and thus optimizing the computational effort. We discuss the ability of the algorithm to detect whether or not geometric singularities such as corners are genuine to the problem or simply due to lack of resolution - a new paradigm in adaptivity.
Fil: Morin, Pedro. Universidad Nacional del Litoral; Argentina
Fil: Nochetto, Ricardo Horacio. University of Maryland; Estados Unidos
Fil: Pauletti, Miguel Sebastian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
Fil: Verani, Marco. Politecnico di Milano; Italia
description We examine shape optimization problems in the context of inexact sequential quadratic programming. Inexactness is a consequence of using adaptive finite element methods (AFEM) to approximate the state and adjoint equations (via the dual weighted residual method), update the boundary, and compute the geometric functional. We present a novel algorithm that equidistributes the errors due to shape optimization and discretization, thereby leading to coarse resolution in the early stages and fine resolution upon convergence, and thus optimizing the computational effort. We discuss the ability of the algorithm to detect whether or not geometric singularities such as corners are genuine to the problem or simply due to lack of resolution - a new paradigm in adaptivity.
publishDate 2012
dc.date.none.fl_str_mv 2012-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/67965
Morin, Pedro; Nochetto, Ricardo Horacio; Pauletti, Miguel Sebastian; Verani, Marco; Adaptive finite element method for shape optimization; Cambridge University Press; Esaim. Cocv; 18; 4; 10-2012; 1122-1149
1292-8119
CONICET Digital
CONICET
url http://hdl.handle.net/11336/67965
identifier_str_mv Morin, Pedro; Nochetto, Ricardo Horacio; Pauletti, Miguel Sebastian; Verani, Marco; Adaptive finite element method for shape optimization; Cambridge University Press; Esaim. Cocv; 18; 4; 10-2012; 1122-1149
1292-8119
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/doi/10.1051/cocv/2011192
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Cambridge University Press
publisher.none.fl_str_mv Cambridge University Press
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1843606782958632960
score 13.001348