A local symmetry result for linear elliptic problems with solutions changing sign

Autores
Canuto, Bruno
Año de publicación
2011
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We prove that the only domain Ω such that there exists a solution to the following problem in Ω, on ∂Ω, and , for a given constant c, is the unit ball , if we assume that Ω lies in an appropriate class of Lipschitz domains.
Fil: Canuto, Bruno. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Materia
Overdetermined Elliptic Problems
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/14912

id CONICETDig_3bf5e5d67ec7edf0c7fc0f87ebeab141
oai_identifier_str oai:ri.conicet.gov.ar:11336/14912
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling A local symmetry result for linear elliptic problems with solutions changing signCanuto, BrunoOverdetermined Elliptic Problemshttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We prove that the only domain Ω such that there exists a solution to the following problem in Ω, on ∂Ω, and , for a given constant c, is the unit ball , if we assume that Ω lies in an appropriate class of Lipschitz domains.Fil: Canuto, Bruno. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaElsevier Masson2011-04-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/14912Canuto, Bruno; A local symmetry result for linear elliptic problems with solutions changing sign; Elsevier Masson; Annales de L4institut Henri Poincare-analyse Non Lineaire; 28; 4; 2-4-2011; 551-5640294-1449enginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0294144911000369info:eu-repo/semantics/altIdentifier/doi/10.1016/j.anihpc.2011.03.005info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:56:04Zoai:ri.conicet.gov.ar:11336/14912instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:56:04.398CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv A local symmetry result for linear elliptic problems with solutions changing sign
title A local symmetry result for linear elliptic problems with solutions changing sign
spellingShingle A local symmetry result for linear elliptic problems with solutions changing sign
Canuto, Bruno
Overdetermined Elliptic Problems
title_short A local symmetry result for linear elliptic problems with solutions changing sign
title_full A local symmetry result for linear elliptic problems with solutions changing sign
title_fullStr A local symmetry result for linear elliptic problems with solutions changing sign
title_full_unstemmed A local symmetry result for linear elliptic problems with solutions changing sign
title_sort A local symmetry result for linear elliptic problems with solutions changing sign
dc.creator.none.fl_str_mv Canuto, Bruno
author Canuto, Bruno
author_facet Canuto, Bruno
author_role author
dc.subject.none.fl_str_mv Overdetermined Elliptic Problems
topic Overdetermined Elliptic Problems
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv We prove that the only domain Ω such that there exists a solution to the following problem in Ω, on ∂Ω, and , for a given constant c, is the unit ball , if we assume that Ω lies in an appropriate class of Lipschitz domains.
Fil: Canuto, Bruno. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
description We prove that the only domain Ω such that there exists a solution to the following problem in Ω, on ∂Ω, and , for a given constant c, is the unit ball , if we assume that Ω lies in an appropriate class of Lipschitz domains.
publishDate 2011
dc.date.none.fl_str_mv 2011-04-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/14912
Canuto, Bruno; A local symmetry result for linear elliptic problems with solutions changing sign; Elsevier Masson; Annales de L4institut Henri Poincare-analyse Non Lineaire; 28; 4; 2-4-2011; 551-564
0294-1449
url http://hdl.handle.net/11336/14912
identifier_str_mv Canuto, Bruno; A local symmetry result for linear elliptic problems with solutions changing sign; Elsevier Masson; Annales de L4institut Henri Poincare-analyse Non Lineaire; 28; 4; 2-4-2011; 551-564
0294-1449
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0294144911000369
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.anihpc.2011.03.005
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Masson
publisher.none.fl_str_mv Elsevier Masson
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269382124765184
score 13.13397