Mixed methods for degenerate elliptic problems and application to fractional Laplacian
- Autores
- Cejas, María Eugenia; Durán, Ricardo Guillermo; Prieto, Mariana I.
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We analyze the approximation by mixed finite element methods of solutions of equations of the form −div (a ∇u) = g , where the coefficient a = a (x ) can degenerate going to zero or infinity. First, we extend the classic error analysis to this case provided that the coefficient a belongs to the Muckenhoupt class A 2 . The analysis developed applies to general mixed finite element spaces satisfying the standard commutative diagram property, whenever some stability and interpolation error estimates are valid in weighted norms. Next, we consider in detail the case of Raviart–Thomas spaces of arbitrary order, obtaining optimal order error estimates for simplicial elements in any dimension and for convex quadrilateral elements in the two dimensional case, in both cases under a regularity assumption on the family of meshes. For the lowest order case we show that the regularity assumption can be removed and prove anisotropic error estimates which are of interest in problems with boundary layers. Finally we apply the results to a problem arising in the solution of the fractional Laplace equation.
Facultad de Ciencias Exactas - Materia
-
Matemática
Mixed finite elements
Degenerate elliptic problems
Fractional Laplacian - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-nc-sa/4.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/124331
Ver los metadatos del registro completo
id |
SEDICI_4830e8be4c560ccdc66f79a25cc3bfab |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/124331 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Mixed methods for degenerate elliptic problems and application to fractional LaplacianCejas, María EugeniaDurán, Ricardo GuillermoPrieto, Mariana I.MatemáticaMixed finite elementsDegenerate elliptic problemsFractional LaplacianWe analyze the approximation by mixed finite element methods of solutions of equations of the form −div (a ∇u) = g , where the coefficient a = a (x ) can degenerate going to zero or infinity. First, we extend the classic error analysis to this case provided that the coefficient a belongs to the Muckenhoupt class A 2 . The analysis developed applies to general mixed finite element spaces satisfying the standard commutative diagram property, whenever some stability and interpolation error estimates are valid in weighted norms. Next, we consider in detail the case of Raviart–Thomas spaces of arbitrary order, obtaining optimal order error estimates for simplicial elements in any dimension and for convex quadrilateral elements in the two dimensional case, in both cases under a regularity assumption on the family of meshes. For the lowest order case we show that the regularity assumption can be removed and prove anisotropic error estimates which are of interest in problems with boundary layers. Finally we apply the results to a problem arising in the solution of the fractional Laplace equation.Facultad de Ciencias Exactas2021info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfS993-S1019http://sedici.unlp.edu.ar/handle/10915/124331enginfo:eu-repo/semantics/altIdentifier/issn/0764-583Xinfo:eu-repo/semantics/altIdentifier/issn/1290-3841info:eu-repo/semantics/altIdentifier/doi/10.1051/m2an/2020068info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-10T12:32:25Zoai:sedici.unlp.edu.ar:10915/124331Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-10 12:32:25.957SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Mixed methods for degenerate elliptic problems and application to fractional Laplacian |
title |
Mixed methods for degenerate elliptic problems and application to fractional Laplacian |
spellingShingle |
Mixed methods for degenerate elliptic problems and application to fractional Laplacian Cejas, María Eugenia Matemática Mixed finite elements Degenerate elliptic problems Fractional Laplacian |
title_short |
Mixed methods for degenerate elliptic problems and application to fractional Laplacian |
title_full |
Mixed methods for degenerate elliptic problems and application to fractional Laplacian |
title_fullStr |
Mixed methods for degenerate elliptic problems and application to fractional Laplacian |
title_full_unstemmed |
Mixed methods for degenerate elliptic problems and application to fractional Laplacian |
title_sort |
Mixed methods for degenerate elliptic problems and application to fractional Laplacian |
dc.creator.none.fl_str_mv |
Cejas, María Eugenia Durán, Ricardo Guillermo Prieto, Mariana I. |
author |
Cejas, María Eugenia |
author_facet |
Cejas, María Eugenia Durán, Ricardo Guillermo Prieto, Mariana I. |
author_role |
author |
author2 |
Durán, Ricardo Guillermo Prieto, Mariana I. |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Matemática Mixed finite elements Degenerate elliptic problems Fractional Laplacian |
topic |
Matemática Mixed finite elements Degenerate elliptic problems Fractional Laplacian |
dc.description.none.fl_txt_mv |
We analyze the approximation by mixed finite element methods of solutions of equations of the form −div (a ∇u) = g , where the coefficient a = a (x ) can degenerate going to zero or infinity. First, we extend the classic error analysis to this case provided that the coefficient a belongs to the Muckenhoupt class A 2 . The analysis developed applies to general mixed finite element spaces satisfying the standard commutative diagram property, whenever some stability and interpolation error estimates are valid in weighted norms. Next, we consider in detail the case of Raviart–Thomas spaces of arbitrary order, obtaining optimal order error estimates for simplicial elements in any dimension and for convex quadrilateral elements in the two dimensional case, in both cases under a regularity assumption on the family of meshes. For the lowest order case we show that the regularity assumption can be removed and prove anisotropic error estimates which are of interest in problems with boundary layers. Finally we apply the results to a problem arising in the solution of the fractional Laplace equation. Facultad de Ciencias Exactas |
description |
We analyze the approximation by mixed finite element methods of solutions of equations of the form −div (a ∇u) = g , where the coefficient a = a (x ) can degenerate going to zero or infinity. First, we extend the classic error analysis to this case provided that the coefficient a belongs to the Muckenhoupt class A 2 . The analysis developed applies to general mixed finite element spaces satisfying the standard commutative diagram property, whenever some stability and interpolation error estimates are valid in weighted norms. Next, we consider in detail the case of Raviart–Thomas spaces of arbitrary order, obtaining optimal order error estimates for simplicial elements in any dimension and for convex quadrilateral elements in the two dimensional case, in both cases under a regularity assumption on the family of meshes. For the lowest order case we show that the regularity assumption can be removed and prove anisotropic error estimates which are of interest in problems with boundary layers. Finally we apply the results to a problem arising in the solution of the fractional Laplace equation. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Articulo http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/124331 |
url |
http://sedici.unlp.edu.ar/handle/10915/124331 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/issn/0764-583X info:eu-repo/semantics/altIdentifier/issn/1290-3841 info:eu-repo/semantics/altIdentifier/doi/10.1051/m2an/2020068 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) |
dc.format.none.fl_str_mv |
application/pdf S993-S1019 |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842904436871004160 |
score |
12.993085 |