Mixed methods for degenerate elliptic problems and application to fractional Laplacian

Autores
Cejas, María Eugenia; Durán, Ricardo Guillermo; Prieto, Mariana I.
Año de publicación
2021
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
We analyze the approximation by mixed finite element methods of solutions of equations of the form −div (a ∇u) = g , where the coefficient a  = a (x ) can degenerate going to zero or infinity. First, we extend the classic error analysis to this case provided that the coefficient a belongs to the Muckenhoupt class A 2 . The analysis developed applies to general mixed finite element spaces satisfying the standard commutative diagram property, whenever some stability and interpolation error estimates are valid in weighted norms. Next, we consider in detail the case of Raviart–Thomas spaces of arbitrary order, obtaining optimal order error estimates for simplicial elements in any dimension and for convex quadrilateral elements in the two dimensional case, in both cases under a regularity assumption on the family of meshes. For the lowest order case we show that the regularity assumption can be removed and prove anisotropic error estimates which are of interest in problems with boundary layers. Finally we apply the results to a problem arising in the solution of the fractional Laplace equation.
Facultad de Ciencias Exactas
Materia
Matemática
Mixed finite elements
Degenerate elliptic problems
Fractional Laplacian
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-nc-sa/4.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/124331

id SEDICI_4830e8be4c560ccdc66f79a25cc3bfab
oai_identifier_str oai:sedici.unlp.edu.ar:10915/124331
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Mixed methods for degenerate elliptic problems and application to fractional LaplacianCejas, María EugeniaDurán, Ricardo GuillermoPrieto, Mariana I.MatemáticaMixed finite elementsDegenerate elliptic problemsFractional LaplacianWe analyze the approximation by mixed finite element methods of solutions of equations of the form −div (a ∇u) = g , where the coefficient a  = a (x ) can degenerate going to zero or infinity. First, we extend the classic error analysis to this case provided that the coefficient a belongs to the Muckenhoupt class A 2 . The analysis developed applies to general mixed finite element spaces satisfying the standard commutative diagram property, whenever some stability and interpolation error estimates are valid in weighted norms. Next, we consider in detail the case of Raviart–Thomas spaces of arbitrary order, obtaining optimal order error estimates for simplicial elements in any dimension and for convex quadrilateral elements in the two dimensional case, in both cases under a regularity assumption on the family of meshes. For the lowest order case we show that the regularity assumption can be removed and prove anisotropic error estimates which are of interest in problems with boundary layers. Finally we apply the results to a problem arising in the solution of the fractional Laplace equation.Facultad de Ciencias Exactas2021info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArticulohttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfS993-S1019http://sedici.unlp.edu.ar/handle/10915/124331enginfo:eu-repo/semantics/altIdentifier/issn/0764-583Xinfo:eu-repo/semantics/altIdentifier/issn/1290-3841info:eu-repo/semantics/altIdentifier/doi/10.1051/m2an/2020068info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/4.0/Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-10T12:32:25Zoai:sedici.unlp.edu.ar:10915/124331Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-10 12:32:25.957SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Mixed methods for degenerate elliptic problems and application to fractional Laplacian
title Mixed methods for degenerate elliptic problems and application to fractional Laplacian
spellingShingle Mixed methods for degenerate elliptic problems and application to fractional Laplacian
Cejas, María Eugenia
Matemática
Mixed finite elements
Degenerate elliptic problems
Fractional Laplacian
title_short Mixed methods for degenerate elliptic problems and application to fractional Laplacian
title_full Mixed methods for degenerate elliptic problems and application to fractional Laplacian
title_fullStr Mixed methods for degenerate elliptic problems and application to fractional Laplacian
title_full_unstemmed Mixed methods for degenerate elliptic problems and application to fractional Laplacian
title_sort Mixed methods for degenerate elliptic problems and application to fractional Laplacian
dc.creator.none.fl_str_mv Cejas, María Eugenia
Durán, Ricardo Guillermo
Prieto, Mariana I.
author Cejas, María Eugenia
author_facet Cejas, María Eugenia
Durán, Ricardo Guillermo
Prieto, Mariana I.
author_role author
author2 Durán, Ricardo Guillermo
Prieto, Mariana I.
author2_role author
author
dc.subject.none.fl_str_mv Matemática
Mixed finite elements
Degenerate elliptic problems
Fractional Laplacian
topic Matemática
Mixed finite elements
Degenerate elliptic problems
Fractional Laplacian
dc.description.none.fl_txt_mv We analyze the approximation by mixed finite element methods of solutions of equations of the form −div (a ∇u) = g , where the coefficient a  = a (x ) can degenerate going to zero or infinity. First, we extend the classic error analysis to this case provided that the coefficient a belongs to the Muckenhoupt class A 2 . The analysis developed applies to general mixed finite element spaces satisfying the standard commutative diagram property, whenever some stability and interpolation error estimates are valid in weighted norms. Next, we consider in detail the case of Raviart–Thomas spaces of arbitrary order, obtaining optimal order error estimates for simplicial elements in any dimension and for convex quadrilateral elements in the two dimensional case, in both cases under a regularity assumption on the family of meshes. For the lowest order case we show that the regularity assumption can be removed and prove anisotropic error estimates which are of interest in problems with boundary layers. Finally we apply the results to a problem arising in the solution of the fractional Laplace equation.
Facultad de Ciencias Exactas
description We analyze the approximation by mixed finite element methods of solutions of equations of the form −div (a ∇u) = g , where the coefficient a  = a (x ) can degenerate going to zero or infinity. First, we extend the classic error analysis to this case provided that the coefficient a belongs to the Muckenhoupt class A 2 . The analysis developed applies to general mixed finite element spaces satisfying the standard commutative diagram property, whenever some stability and interpolation error estimates are valid in weighted norms. Next, we consider in detail the case of Raviart–Thomas spaces of arbitrary order, obtaining optimal order error estimates for simplicial elements in any dimension and for convex quadrilateral elements in the two dimensional case, in both cases under a regularity assumption on the family of meshes. For the lowest order case we show that the regularity assumption can be removed and prove anisotropic error estimates which are of interest in problems with boundary layers. Finally we apply the results to a problem arising in the solution of the fractional Laplace equation.
publishDate 2021
dc.date.none.fl_str_mv 2021
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Articulo
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/124331
url http://sedici.unlp.edu.ar/handle/10915/124331
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/issn/0764-583X
info:eu-repo/semantics/altIdentifier/issn/1290-3841
info:eu-repo/semantics/altIdentifier/doi/10.1051/m2an/2020068
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
dc.format.none.fl_str_mv application/pdf
S993-S1019
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842904436871004160
score 12.993085