Mixed methods for degenerate elliptic problems and application to fractional Laplacian
- Autores
- Cejas, María Eugenia; Duran, Ricardo Guillermo; Prieto, Mariana Ines
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- We analyze the approximation by mixed finite element methods of solutions of equations of the form −div (a∇u) = g, where the coefficient a = a(x) can degenerate going to zero or infinity. First, we extend the classic error analysis to this case provided that the coefficient a belongs to the Muckenhoupt class A2. The analysis developed applies to general mixed finite element spaces satisfying the standard commutative diagram property, whenever some stability and interpolation error estimates are valid in weighted norms. Next, we consider in detail the case of Raviart–Thomas spaces of arbitrary order, obtaining optimal order error estimates for simplicial elements in any dimension and for convex quadrilateral elements in the two dimensional case, in both cases under a regularity assumption on the family of meshes. For the lowest order case we show that the regularity assumption can be removed and prove anisotropic error estimates which are of interest in problems with boundary layers. Finally we apply the results to a problem arising in the solution of the fractional Laplace equation.
Fil: Cejas, María Eugenia. Universidad Nacional de La Plata. Departamento de Matemática, Facultad de Ciencias Exactas. Centro de Matemática La Plata ; Argentina
Fil: Duran, Ricardo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina
Fil: Prieto, Mariana Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina - Materia
-
DEGENERATE ELLIPTIC PROBLEMS
FRACTIONAL LAPLACIAN
MIXED FINITE ELEMENTS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/135120
Ver los metadatos del registro completo
id |
CONICETDig_5ddbaccb45edc07274456050a4f1c1bf |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/135120 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Mixed methods for degenerate elliptic problems and application to fractional LaplacianCejas, María EugeniaDuran, Ricardo GuillermoPrieto, Mariana InesDEGENERATE ELLIPTIC PROBLEMSFRACTIONAL LAPLACIANMIXED FINITE ELEMENTShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1We analyze the approximation by mixed finite element methods of solutions of equations of the form −div (a∇u) = g, where the coefficient a = a(x) can degenerate going to zero or infinity. First, we extend the classic error analysis to this case provided that the coefficient a belongs to the Muckenhoupt class A2. The analysis developed applies to general mixed finite element spaces satisfying the standard commutative diagram property, whenever some stability and interpolation error estimates are valid in weighted norms. Next, we consider in detail the case of Raviart–Thomas spaces of arbitrary order, obtaining optimal order error estimates for simplicial elements in any dimension and for convex quadrilateral elements in the two dimensional case, in both cases under a regularity assumption on the family of meshes. For the lowest order case we show that the regularity assumption can be removed and prove anisotropic error estimates which are of interest in problems with boundary layers. Finally we apply the results to a problem arising in the solution of the fractional Laplace equation.Fil: Cejas, María Eugenia. Universidad Nacional de La Plata. Departamento de Matemática, Facultad de Ciencias Exactas. Centro de Matemática La Plata ; ArgentinaFil: Duran, Ricardo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Prieto, Mariana Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; ArgentinaEDP Sciences2021-02-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/135120Cejas, María Eugenia; Duran, Ricardo Guillermo; Prieto, Mariana Ines; Mixed methods for degenerate elliptic problems and application to fractional Laplacian; EDP Sciences; ESAIM. Modélisation mathématique et analyse numérique; 55; 26-2-2021; 993-10190764-583X1290-3841CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.esaim-m2an.org/articles/m2an/abs/2021/01/m2an200082/m2an200082.htmlinfo:eu-repo/semantics/altIdentifier/doi/10.1051/m2an/2020068info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1903.05138info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-17T11:11:54Zoai:ri.conicet.gov.ar:11336/135120instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-17 11:11:54.694CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Mixed methods for degenerate elliptic problems and application to fractional Laplacian |
title |
Mixed methods for degenerate elliptic problems and application to fractional Laplacian |
spellingShingle |
Mixed methods for degenerate elliptic problems and application to fractional Laplacian Cejas, María Eugenia DEGENERATE ELLIPTIC PROBLEMS FRACTIONAL LAPLACIAN MIXED FINITE ELEMENTS |
title_short |
Mixed methods for degenerate elliptic problems and application to fractional Laplacian |
title_full |
Mixed methods for degenerate elliptic problems and application to fractional Laplacian |
title_fullStr |
Mixed methods for degenerate elliptic problems and application to fractional Laplacian |
title_full_unstemmed |
Mixed methods for degenerate elliptic problems and application to fractional Laplacian |
title_sort |
Mixed methods for degenerate elliptic problems and application to fractional Laplacian |
dc.creator.none.fl_str_mv |
Cejas, María Eugenia Duran, Ricardo Guillermo Prieto, Mariana Ines |
author |
Cejas, María Eugenia |
author_facet |
Cejas, María Eugenia Duran, Ricardo Guillermo Prieto, Mariana Ines |
author_role |
author |
author2 |
Duran, Ricardo Guillermo Prieto, Mariana Ines |
author2_role |
author author |
dc.subject.none.fl_str_mv |
DEGENERATE ELLIPTIC PROBLEMS FRACTIONAL LAPLACIAN MIXED FINITE ELEMENTS |
topic |
DEGENERATE ELLIPTIC PROBLEMS FRACTIONAL LAPLACIAN MIXED FINITE ELEMENTS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
We analyze the approximation by mixed finite element methods of solutions of equations of the form −div (a∇u) = g, where the coefficient a = a(x) can degenerate going to zero or infinity. First, we extend the classic error analysis to this case provided that the coefficient a belongs to the Muckenhoupt class A2. The analysis developed applies to general mixed finite element spaces satisfying the standard commutative diagram property, whenever some stability and interpolation error estimates are valid in weighted norms. Next, we consider in detail the case of Raviart–Thomas spaces of arbitrary order, obtaining optimal order error estimates for simplicial elements in any dimension and for convex quadrilateral elements in the two dimensional case, in both cases under a regularity assumption on the family of meshes. For the lowest order case we show that the regularity assumption can be removed and prove anisotropic error estimates which are of interest in problems with boundary layers. Finally we apply the results to a problem arising in the solution of the fractional Laplace equation. Fil: Cejas, María Eugenia. Universidad Nacional de La Plata. Departamento de Matemática, Facultad de Ciencias Exactas. Centro de Matemática La Plata ; Argentina Fil: Duran, Ricardo Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; Argentina Fil: Prieto, Mariana Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentina |
description |
We analyze the approximation by mixed finite element methods of solutions of equations of the form −div (a∇u) = g, where the coefficient a = a(x) can degenerate going to zero or infinity. First, we extend the classic error analysis to this case provided that the coefficient a belongs to the Muckenhoupt class A2. The analysis developed applies to general mixed finite element spaces satisfying the standard commutative diagram property, whenever some stability and interpolation error estimates are valid in weighted norms. Next, we consider in detail the case of Raviart–Thomas spaces of arbitrary order, obtaining optimal order error estimates for simplicial elements in any dimension and for convex quadrilateral elements in the two dimensional case, in both cases under a regularity assumption on the family of meshes. For the lowest order case we show that the regularity assumption can be removed and prove anisotropic error estimates which are of interest in problems with boundary layers. Finally we apply the results to a problem arising in the solution of the fractional Laplace equation. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-02-26 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/135120 Cejas, María Eugenia; Duran, Ricardo Guillermo; Prieto, Mariana Ines; Mixed methods for degenerate elliptic problems and application to fractional Laplacian; EDP Sciences; ESAIM. Modélisation mathématique et analyse numérique; 55; 26-2-2021; 993-1019 0764-583X 1290-3841 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/135120 |
identifier_str_mv |
Cejas, María Eugenia; Duran, Ricardo Guillermo; Prieto, Mariana Ines; Mixed methods for degenerate elliptic problems and application to fractional Laplacian; EDP Sciences; ESAIM. Modélisation mathématique et analyse numérique; 55; 26-2-2021; 993-1019 0764-583X 1290-3841 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.esaim-m2an.org/articles/m2an/abs/2021/01/m2an200082/m2an200082.html info:eu-repo/semantics/altIdentifier/doi/10.1051/m2an/2020068 info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1903.05138 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
EDP Sciences |
publisher.none.fl_str_mv |
EDP Sciences |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1843606451775340544 |
score |
13.001348 |