Existence of strictly positive solutions for sublinear elliptic problems in bounded domains
- Autores
- Godoy, Tomás Fernando; Kaufmann, Uriel
- Año de publicación
- 2014
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Fil: Godoy, Tomás Fernando. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.
Fil: Kaufmann, Uriel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.
Let Ω be a smooth bounded domain in RN and let m be a possibly discontinuous and unbounded function that changes sign in Ω. Let f : [0,∞) → [0,∞) be a nondecreasing continuous function such that k1 ξp ≤ f (ξ) ≤ k2 ξp for all ξ ≥ 0 and some k1 ,k2 > 0 and p ∈ (0,1). We study existence and nonexistence of strictly positive solutions for nonlinear elliptic problems of the form −∆u = m (x) f (u) in Ω, u = 0 on ∂Ω.
publishedVersion
Fil: Godoy, Tomás Fernando. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.
Fil: Kaufmann, Uriel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.
Matemática Pura - Fuente
- issn: 2169-0375
- Materia
-
Elliptic problems
Indefinite nonlinearities
Sub and supersolutions
Positive solutions - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- Repositorio
- Institución
- Universidad Nacional de Córdoba
- OAI Identificador
- oai:rdu.unc.edu.ar:11086/20549
Ver los metadatos del registro completo
id |
RDUUNC_a2944252677534888f30f58f5f7d1f5a |
---|---|
oai_identifier_str |
oai:rdu.unc.edu.ar:11086/20549 |
network_acronym_str |
RDUUNC |
repository_id_str |
2572 |
network_name_str |
Repositorio Digital Universitario (UNC) |
spelling |
Existence of strictly positive solutions for sublinear elliptic problems in bounded domainsGodoy, Tomás FernandoKaufmann, UrielElliptic problemsIndefinite nonlinearitiesSub and supersolutionsPositive solutionsFil: Godoy, Tomás Fernando. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Kaufmann, Uriel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Let Ω be a smooth bounded domain in RN and let m be a possibly discontinuous and unbounded function that changes sign in Ω. Let f : [0,∞) → [0,∞) be a nondecreasing continuous function such that k1 ξp ≤ f (ξ) ≤ k2 ξp for all ξ ≥ 0 and some k1 ,k2 > 0 and p ∈ (0,1). We study existence and nonexistence of strictly positive solutions for nonlinear elliptic problems of the form −∆u = m (x) f (u) in Ω, u = 0 on ∂Ω.publishedVersionFil: Godoy, Tomás Fernando. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Kaufmann, Uriel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Matemática Pura2014info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfGodoy, T. & Kaufmann, U. (2014). Existence of Strictly Positive Solutions for Sublinear Elliptic Problems in Bounded Domains. Advanced Nonlinear Studies, 14(2), 353-359. https://doi.org/10.1515/ans-2014-0207http://hdl.handle.net/11086/20549https://doi.org/10.1515/ans-2014-0207issn: 2169-0375reponame:Repositorio Digital Universitario (UNC)instname:Universidad Nacional de Córdobainstacron:UNCenginfo:eu-repo/semantics/openAccess2025-10-16T09:31:07Zoai:rdu.unc.edu.ar:11086/20549Institucionalhttps://rdu.unc.edu.ar/Universidad públicaNo correspondehttp://rdu.unc.edu.ar/oai/snrdoca.unc@gmail.comArgentinaNo correspondeNo correspondeNo correspondeopendoar:25722025-10-16 09:31:07.462Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdobafalse |
dc.title.none.fl_str_mv |
Existence of strictly positive solutions for sublinear elliptic problems in bounded domains |
title |
Existence of strictly positive solutions for sublinear elliptic problems in bounded domains |
spellingShingle |
Existence of strictly positive solutions for sublinear elliptic problems in bounded domains Godoy, Tomás Fernando Elliptic problems Indefinite nonlinearities Sub and supersolutions Positive solutions |
title_short |
Existence of strictly positive solutions for sublinear elliptic problems in bounded domains |
title_full |
Existence of strictly positive solutions for sublinear elliptic problems in bounded domains |
title_fullStr |
Existence of strictly positive solutions for sublinear elliptic problems in bounded domains |
title_full_unstemmed |
Existence of strictly positive solutions for sublinear elliptic problems in bounded domains |
title_sort |
Existence of strictly positive solutions for sublinear elliptic problems in bounded domains |
dc.creator.none.fl_str_mv |
Godoy, Tomás Fernando Kaufmann, Uriel |
author |
Godoy, Tomás Fernando |
author_facet |
Godoy, Tomás Fernando Kaufmann, Uriel |
author_role |
author |
author2 |
Kaufmann, Uriel |
author2_role |
author |
dc.subject.none.fl_str_mv |
Elliptic problems Indefinite nonlinearities Sub and supersolutions Positive solutions |
topic |
Elliptic problems Indefinite nonlinearities Sub and supersolutions Positive solutions |
dc.description.none.fl_txt_mv |
Fil: Godoy, Tomás Fernando. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Fil: Kaufmann, Uriel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Let Ω be a smooth bounded domain in RN and let m be a possibly discontinuous and unbounded function that changes sign in Ω. Let f : [0,∞) → [0,∞) be a nondecreasing continuous function such that k1 ξp ≤ f (ξ) ≤ k2 ξp for all ξ ≥ 0 and some k1 ,k2 > 0 and p ∈ (0,1). We study existence and nonexistence of strictly positive solutions for nonlinear elliptic problems of the form −∆u = m (x) f (u) in Ω, u = 0 on ∂Ω. publishedVersion Fil: Godoy, Tomás Fernando. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Fil: Kaufmann, Uriel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Matemática Pura |
description |
Fil: Godoy, Tomás Fernando. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. |
publishDate |
2014 |
dc.date.none.fl_str_mv |
2014 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
Godoy, T. & Kaufmann, U. (2014). Existence of Strictly Positive Solutions for Sublinear Elliptic Problems in Bounded Domains. Advanced Nonlinear Studies, 14(2), 353-359. https://doi.org/10.1515/ans-2014-0207 http://hdl.handle.net/11086/20549 https://doi.org/10.1515/ans-2014-0207 |
identifier_str_mv |
Godoy, T. & Kaufmann, U. (2014). Existence of Strictly Positive Solutions for Sublinear Elliptic Problems in Bounded Domains. Advanced Nonlinear Studies, 14(2), 353-359. https://doi.org/10.1515/ans-2014-0207 |
url |
http://hdl.handle.net/11086/20549 https://doi.org/10.1515/ans-2014-0207 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
issn: 2169-0375 reponame:Repositorio Digital Universitario (UNC) instname:Universidad Nacional de Córdoba instacron:UNC |
reponame_str |
Repositorio Digital Universitario (UNC) |
collection |
Repositorio Digital Universitario (UNC) |
instname_str |
Universidad Nacional de Córdoba |
instacron_str |
UNC |
institution |
UNC |
repository.name.fl_str_mv |
Repositorio Digital Universitario (UNC) - Universidad Nacional de Córdoba |
repository.mail.fl_str_mv |
oca.unc@gmail.com |
_version_ |
1846143392104316928 |
score |
13.22299 |