Classification of 6-dimensional splittable flat solvmanifolds
- Autores
- Tolcachier, Alejandro
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- A flat solvmanifold is a compact quotient Γ∖G where G is a simply-connected solvable Lie group endowed with a flat left invariant metric and Γ is a lattice of G. Any such Lie group can be written as G=Rk ltimes_ϕ Rm with Rm the nilradical. In this article we focus on 6-dimensional splittable flat solvmanifolds, which are obtained quotienting G by a lattice Γ that can be decomposed as Γ=Γ1 ltimes_ϕ Γ2, where Γ1 and Γ2 are lattices of Rk and Rm, respectively. We analyze the relation between these lattices and the conjugacy classes of finite abelian subgroups of GL(n,Z), which is known up to n≤6. From this we obtain the classification of 6-dimensional splittable flat solvmanifolds.
Fil: Tolcachier, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
Splittable Lie group
Flat manifold
Solvmanifold
Lattice - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/215085
Ver los metadatos del registro completo
id |
CONICETDig_27d59654fdc128c08e528aa50a1634c0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/215085 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Classification of 6-dimensional splittable flat solvmanifoldsTolcachier, AlejandroSplittable Lie groupFlat manifoldSolvmanifoldLatticehttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1A flat solvmanifold is a compact quotient Γ∖G where G is a simply-connected solvable Lie group endowed with a flat left invariant metric and Γ is a lattice of G. Any such Lie group can be written as G=Rk ltimes_ϕ Rm with Rm the nilradical. In this article we focus on 6-dimensional splittable flat solvmanifolds, which are obtained quotienting G by a lattice Γ that can be decomposed as Γ=Γ1 ltimes_ϕ Γ2, where Γ1 and Γ2 are lattices of Rk and Rm, respectively. We analyze the relation between these lattices and the conjugacy classes of finite abelian subgroups of GL(n,Z), which is known up to n≤6. From this we obtain the classification of 6-dimensional splittable flat solvmanifolds.Fil: Tolcachier, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaSpringer2022-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/215085Tolcachier, Alejandro; Classification of 6-dimensional splittable flat solvmanifolds; Springer; Manuscripta Mathematica; 1-2022; 1-310025-2611CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00229-021-01364-winfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00229-021-01364-winfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-15T15:42:31Zoai:ri.conicet.gov.ar:11336/215085instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-15 15:42:31.873CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Classification of 6-dimensional splittable flat solvmanifolds |
title |
Classification of 6-dimensional splittable flat solvmanifolds |
spellingShingle |
Classification of 6-dimensional splittable flat solvmanifolds Tolcachier, Alejandro Splittable Lie group Flat manifold Solvmanifold Lattice |
title_short |
Classification of 6-dimensional splittable flat solvmanifolds |
title_full |
Classification of 6-dimensional splittable flat solvmanifolds |
title_fullStr |
Classification of 6-dimensional splittable flat solvmanifolds |
title_full_unstemmed |
Classification of 6-dimensional splittable flat solvmanifolds |
title_sort |
Classification of 6-dimensional splittable flat solvmanifolds |
dc.creator.none.fl_str_mv |
Tolcachier, Alejandro |
author |
Tolcachier, Alejandro |
author_facet |
Tolcachier, Alejandro |
author_role |
author |
dc.subject.none.fl_str_mv |
Splittable Lie group Flat manifold Solvmanifold Lattice |
topic |
Splittable Lie group Flat manifold Solvmanifold Lattice |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
A flat solvmanifold is a compact quotient Γ∖G where G is a simply-connected solvable Lie group endowed with a flat left invariant metric and Γ is a lattice of G. Any such Lie group can be written as G=Rk ltimes_ϕ Rm with Rm the nilradical. In this article we focus on 6-dimensional splittable flat solvmanifolds, which are obtained quotienting G by a lattice Γ that can be decomposed as Γ=Γ1 ltimes_ϕ Γ2, where Γ1 and Γ2 are lattices of Rk and Rm, respectively. We analyze the relation between these lattices and the conjugacy classes of finite abelian subgroups of GL(n,Z), which is known up to n≤6. From this we obtain the classification of 6-dimensional splittable flat solvmanifolds. Fil: Tolcachier, Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
A flat solvmanifold is a compact quotient Γ∖G where G is a simply-connected solvable Lie group endowed with a flat left invariant metric and Γ is a lattice of G. Any such Lie group can be written as G=Rk ltimes_ϕ Rm with Rm the nilradical. In this article we focus on 6-dimensional splittable flat solvmanifolds, which are obtained quotienting G by a lattice Γ that can be decomposed as Γ=Γ1 ltimes_ϕ Γ2, where Γ1 and Γ2 are lattices of Rk and Rm, respectively. We analyze the relation between these lattices and the conjugacy classes of finite abelian subgroups of GL(n,Z), which is known up to n≤6. From this we obtain the classification of 6-dimensional splittable flat solvmanifolds. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/215085 Tolcachier, Alejandro; Classification of 6-dimensional splittable flat solvmanifolds; Springer; Manuscripta Mathematica; 1-2022; 1-31 0025-2611 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/215085 |
identifier_str_mv |
Tolcachier, Alejandro; Classification of 6-dimensional splittable flat solvmanifolds; Springer; Manuscripta Mathematica; 1-2022; 1-31 0025-2611 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00229-021-01364-w info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00229-021-01364-w |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1846083533572931584 |
score |
13.22299 |