On Ricci negative derivations
- Autores
- Gutiérrez, María Valeria
- Año de publicación
- 2022
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Given a nilpotent Lie algebra, we study the space of all diagonalizable derivations such that the corresponding one-dimensional solvable extension admits a left-invariant metric with negative Ricci curvature. Lauret and Will have conjectured that such a space coincides with an open and convex subset of derivations defined in terms of the moment map for the variety of nilpotent Lie algebras. We prove the validity of the conjecture in dimensions ≤ 5, as well as for Heisenberg Lie algebras and standard filiform Lie algebras.
Fil: Gutiérrez, María Valeria. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina - Materia
-
FILIFORM LIE ALGEBRA
HEISENBERG LIE ALGEBRA
NEGATIVE RICCI CURVATURE
SOLVABLE LIE ALGEBRA - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/219077
Ver los metadatos del registro completo
id |
CONICETDig_ab307be46e2167e3d3c5fd1299f8fcc5 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/219077 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
On Ricci negative derivationsGutiérrez, María ValeriaFILIFORM LIE ALGEBRAHEISENBERG LIE ALGEBRANEGATIVE RICCI CURVATURESOLVABLE LIE ALGEBRAhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given a nilpotent Lie algebra, we study the space of all diagonalizable derivations such that the corresponding one-dimensional solvable extension admits a left-invariant metric with negative Ricci curvature. Lauret and Will have conjectured that such a space coincides with an open and convex subset of derivations defined in terms of the moment map for the variety of nilpotent Lie algebras. We prove the validity of the conjecture in dimensions ≤ 5, as well as for Heisenberg Lie algebras and standard filiform Lie algebras.Fil: Gutiérrez, María Valeria. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; ArgentinaDe Gruyter2022-04info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/219077Gutiérrez, María Valeria; On Ricci negative derivations; De Gruyter; Advances In Geometry; 22; 2; 4-2022; 199-2141615-715XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/doi/10.1515/advgeom-2022-0004info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/document/doi/10.1515/advgeom-2022-0004/htmlinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:05:00Zoai:ri.conicet.gov.ar:11336/219077instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:05:00.744CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
On Ricci negative derivations |
title |
On Ricci negative derivations |
spellingShingle |
On Ricci negative derivations Gutiérrez, María Valeria FILIFORM LIE ALGEBRA HEISENBERG LIE ALGEBRA NEGATIVE RICCI CURVATURE SOLVABLE LIE ALGEBRA |
title_short |
On Ricci negative derivations |
title_full |
On Ricci negative derivations |
title_fullStr |
On Ricci negative derivations |
title_full_unstemmed |
On Ricci negative derivations |
title_sort |
On Ricci negative derivations |
dc.creator.none.fl_str_mv |
Gutiérrez, María Valeria |
author |
Gutiérrez, María Valeria |
author_facet |
Gutiérrez, María Valeria |
author_role |
author |
dc.subject.none.fl_str_mv |
FILIFORM LIE ALGEBRA HEISENBERG LIE ALGEBRA NEGATIVE RICCI CURVATURE SOLVABLE LIE ALGEBRA |
topic |
FILIFORM LIE ALGEBRA HEISENBERG LIE ALGEBRA NEGATIVE RICCI CURVATURE SOLVABLE LIE ALGEBRA |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Given a nilpotent Lie algebra, we study the space of all diagonalizable derivations such that the corresponding one-dimensional solvable extension admits a left-invariant metric with negative Ricci curvature. Lauret and Will have conjectured that such a space coincides with an open and convex subset of derivations defined in terms of the moment map for the variety of nilpotent Lie algebras. We prove the validity of the conjecture in dimensions ≤ 5, as well as for Heisenberg Lie algebras and standard filiform Lie algebras. Fil: Gutiérrez, María Valeria. Universidad Nacional de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba; Argentina |
description |
Given a nilpotent Lie algebra, we study the space of all diagonalizable derivations such that the corresponding one-dimensional solvable extension admits a left-invariant metric with negative Ricci curvature. Lauret and Will have conjectured that such a space coincides with an open and convex subset of derivations defined in terms of the moment map for the variety of nilpotent Lie algebras. We prove the validity of the conjecture in dimensions ≤ 5, as well as for Heisenberg Lie algebras and standard filiform Lie algebras. |
publishDate |
2022 |
dc.date.none.fl_str_mv |
2022-04 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/219077 Gutiérrez, María Valeria; On Ricci negative derivations; De Gruyter; Advances In Geometry; 22; 2; 4-2022; 199-214 1615-715X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/219077 |
identifier_str_mv |
Gutiérrez, María Valeria; On Ricci negative derivations; De Gruyter; Advances In Geometry; 22; 2; 4-2022; 199-214 1615-715X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/doi/10.1515/advgeom-2022-0004 info:eu-repo/semantics/altIdentifier/url/https://www.degruyter.com/document/doi/10.1515/advgeom-2022-0004/html |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
De Gruyter |
publisher.none.fl_str_mv |
De Gruyter |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269885946658816 |
score |
13.13397 |