Automorphisms of non-singular nilpotent Lie algebras
- Autores
- Kaplan, Aroldo; Tiraboschi, Alejandro Leopoldo
- Año de publicación
- 2013
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- For a real, non-singular, 2-step nilpotent Lie algebra n, the group Aut(n)/ Aut0(n), where Aut0(n) is the group of automorphisms which act trivially on the center, is the direct product of a compact group with the 1-dimensional group of dilations. Maximality of some automorphisms groups of n follows and is related to how close is n to being of Heisenberg type. For example, at least when the dimension of the center is two, dim Aut(n) is maximal if and only if n is of Heisenberg type. The connection with fat distributions is discussed.
Fil: Kaplan, Aroldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Tiraboschi, Alejandro Leopoldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina - Materia
-
Automerphisms
Nilpotent
Lie
Algebras - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/25251
Ver los metadatos del registro completo
id |
CONICETDig_b46488312c8a00d7f04553fd76475eb6 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/25251 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Automorphisms of non-singular nilpotent Lie algebrasKaplan, AroldoTiraboschi, Alejandro LeopoldoAutomerphismsNilpotentLieAlgebrashttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1For a real, non-singular, 2-step nilpotent Lie algebra n, the group Aut(n)/ Aut0(n), where Aut0(n) is the group of automorphisms which act trivially on the center, is the direct product of a compact group with the 1-dimensional group of dilations. Maximality of some automorphisms groups of n follows and is related to how close is n to being of Heisenberg type. For example, at least when the dimension of the center is two, dim Aut(n) is maximal if and only if n is of Heisenberg type. The connection with fat distributions is discussed.Fil: Kaplan, Aroldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Tiraboschi, Alejandro Leopoldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaHeldermann Verlag2013-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/25251Kaplan, Aroldo; Tiraboschi, Alejandro Leopoldo; Automorphisms of non-singular nilpotent Lie algebras; Heldermann Verlag; Journal Of Lie Theory; 23; 4; 3-2013; 1085-11000949-5932CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.heldermann.de/JLT/JLT23/JLT234/jlt23054.htminfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1111.5965info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:02:31Zoai:ri.conicet.gov.ar:11336/25251instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:02:32.149CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Automorphisms of non-singular nilpotent Lie algebras |
title |
Automorphisms of non-singular nilpotent Lie algebras |
spellingShingle |
Automorphisms of non-singular nilpotent Lie algebras Kaplan, Aroldo Automerphisms Nilpotent Lie Algebras |
title_short |
Automorphisms of non-singular nilpotent Lie algebras |
title_full |
Automorphisms of non-singular nilpotent Lie algebras |
title_fullStr |
Automorphisms of non-singular nilpotent Lie algebras |
title_full_unstemmed |
Automorphisms of non-singular nilpotent Lie algebras |
title_sort |
Automorphisms of non-singular nilpotent Lie algebras |
dc.creator.none.fl_str_mv |
Kaplan, Aroldo Tiraboschi, Alejandro Leopoldo |
author |
Kaplan, Aroldo |
author_facet |
Kaplan, Aroldo Tiraboschi, Alejandro Leopoldo |
author_role |
author |
author2 |
Tiraboschi, Alejandro Leopoldo |
author2_role |
author |
dc.subject.none.fl_str_mv |
Automerphisms Nilpotent Lie Algebras |
topic |
Automerphisms Nilpotent Lie Algebras |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
For a real, non-singular, 2-step nilpotent Lie algebra n, the group Aut(n)/ Aut0(n), where Aut0(n) is the group of automorphisms which act trivially on the center, is the direct product of a compact group with the 1-dimensional group of dilations. Maximality of some automorphisms groups of n follows and is related to how close is n to being of Heisenberg type. For example, at least when the dimension of the center is two, dim Aut(n) is maximal if and only if n is of Heisenberg type. The connection with fat distributions is discussed. Fil: Kaplan, Aroldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina Fil: Tiraboschi, Alejandro Leopoldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina |
description |
For a real, non-singular, 2-step nilpotent Lie algebra n, the group Aut(n)/ Aut0(n), where Aut0(n) is the group of automorphisms which act trivially on the center, is the direct product of a compact group with the 1-dimensional group of dilations. Maximality of some automorphisms groups of n follows and is related to how close is n to being of Heisenberg type. For example, at least when the dimension of the center is two, dim Aut(n) is maximal if and only if n is of Heisenberg type. The connection with fat distributions is discussed. |
publishDate |
2013 |
dc.date.none.fl_str_mv |
2013-03 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/25251 Kaplan, Aroldo; Tiraboschi, Alejandro Leopoldo; Automorphisms of non-singular nilpotent Lie algebras; Heldermann Verlag; Journal Of Lie Theory; 23; 4; 3-2013; 1085-1100 0949-5932 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/25251 |
identifier_str_mv |
Kaplan, Aroldo; Tiraboschi, Alejandro Leopoldo; Automorphisms of non-singular nilpotent Lie algebras; Heldermann Verlag; Journal Of Lie Theory; 23; 4; 3-2013; 1085-1100 0949-5932 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.heldermann.de/JLT/JLT23/JLT234/jlt23054.htm info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1111.5965 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Heldermann Verlag |
publisher.none.fl_str_mv |
Heldermann Verlag |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269760503414784 |
score |
13.13397 |