Automorphisms of non-singular nilpotent Lie algebras

Autores
Kaplan, Aroldo; Tiraboschi, Alejandro Leopoldo
Año de publicación
2013
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
For a real, non-singular, 2-step nilpotent Lie algebra n, the group Aut(n)/ Aut0(n), where Aut0(n) is the group of automorphisms which act trivially on the center, is the direct product of a compact group with the 1-dimensional group of dilations. Maximality of some automorphisms groups of n follows and is related to how close is n to being of Heisenberg type. For example, at least when the dimension of the center is two, dim Aut(n) is maximal if and only if n is of Heisenberg type. The connection with fat distributions is discussed.
Fil: Kaplan, Aroldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Tiraboschi, Alejandro Leopoldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Materia
Automerphisms
Nilpotent
Lie
Algebras
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/25251

id CONICETDig_b46488312c8a00d7f04553fd76475eb6
oai_identifier_str oai:ri.conicet.gov.ar:11336/25251
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Automorphisms of non-singular nilpotent Lie algebrasKaplan, AroldoTiraboschi, Alejandro LeopoldoAutomerphismsNilpotentLieAlgebrashttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1For a real, non-singular, 2-step nilpotent Lie algebra n, the group Aut(n)/ Aut0(n), where Aut0(n) is the group of automorphisms which act trivially on the center, is the direct product of a compact group with the 1-dimensional group of dilations. Maximality of some automorphisms groups of n follows and is related to how close is n to being of Heisenberg type. For example, at least when the dimension of the center is two, dim Aut(n) is maximal if and only if n is of Heisenberg type. The connection with fat distributions is discussed.Fil: Kaplan, Aroldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaFil: Tiraboschi, Alejandro Leopoldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; ArgentinaHeldermann Verlag2013-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/25251Kaplan, Aroldo; Tiraboschi, Alejandro Leopoldo; Automorphisms of non-singular nilpotent Lie algebras; Heldermann Verlag; Journal Of Lie Theory; 23; 4; 3-2013; 1085-11000949-5932CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.heldermann.de/JLT/JLT23/JLT234/jlt23054.htminfo:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1111.5965info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:02:31Zoai:ri.conicet.gov.ar:11336/25251instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:02:32.149CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Automorphisms of non-singular nilpotent Lie algebras
title Automorphisms of non-singular nilpotent Lie algebras
spellingShingle Automorphisms of non-singular nilpotent Lie algebras
Kaplan, Aroldo
Automerphisms
Nilpotent
Lie
Algebras
title_short Automorphisms of non-singular nilpotent Lie algebras
title_full Automorphisms of non-singular nilpotent Lie algebras
title_fullStr Automorphisms of non-singular nilpotent Lie algebras
title_full_unstemmed Automorphisms of non-singular nilpotent Lie algebras
title_sort Automorphisms of non-singular nilpotent Lie algebras
dc.creator.none.fl_str_mv Kaplan, Aroldo
Tiraboschi, Alejandro Leopoldo
author Kaplan, Aroldo
author_facet Kaplan, Aroldo
Tiraboschi, Alejandro Leopoldo
author_role author
author2 Tiraboschi, Alejandro Leopoldo
author2_role author
dc.subject.none.fl_str_mv Automerphisms
Nilpotent
Lie
Algebras
topic Automerphisms
Nilpotent
Lie
Algebras
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv For a real, non-singular, 2-step nilpotent Lie algebra n, the group Aut(n)/ Aut0(n), where Aut0(n) is the group of automorphisms which act trivially on the center, is the direct product of a compact group with the 1-dimensional group of dilations. Maximality of some automorphisms groups of n follows and is related to how close is n to being of Heisenberg type. For example, at least when the dimension of the center is two, dim Aut(n) is maximal if and only if n is of Heisenberg type. The connection with fat distributions is discussed.
Fil: Kaplan, Aroldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
Fil: Tiraboschi, Alejandro Leopoldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina
description For a real, non-singular, 2-step nilpotent Lie algebra n, the group Aut(n)/ Aut0(n), where Aut0(n) is the group of automorphisms which act trivially on the center, is the direct product of a compact group with the 1-dimensional group of dilations. Maximality of some automorphisms groups of n follows and is related to how close is n to being of Heisenberg type. For example, at least when the dimension of the center is two, dim Aut(n) is maximal if and only if n is of Heisenberg type. The connection with fat distributions is discussed.
publishDate 2013
dc.date.none.fl_str_mv 2013-03
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/25251
Kaplan, Aroldo; Tiraboschi, Alejandro Leopoldo; Automorphisms of non-singular nilpotent Lie algebras; Heldermann Verlag; Journal Of Lie Theory; 23; 4; 3-2013; 1085-1100
0949-5932
CONICET Digital
CONICET
url http://hdl.handle.net/11336/25251
identifier_str_mv Kaplan, Aroldo; Tiraboschi, Alejandro Leopoldo; Automorphisms of non-singular nilpotent Lie algebras; Heldermann Verlag; Journal Of Lie Theory; 23; 4; 3-2013; 1085-1100
0949-5932
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://www.heldermann.de/JLT/JLT23/JLT234/jlt23054.htm
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1111.5965
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Heldermann Verlag
publisher.none.fl_str_mv Heldermann Verlag
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269760503414784
score 13.13397