Differential structure of the Thompson components of selfadjoint operators
- Autores
- Fongi, Guillermina; Maestripieri, Alejandra Laura
- Año de publicación
- 2008
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Different equivalence relations are defined in the set L(H)s of self- adjoint operators of a Hilbert space H in order to extend a very well known relation in the cone of positive operators. As in the positive case, for a G L(H)s the equivalence class Ca admits a differential structure, which is compatible with a complete metric defined on Ca. This metric coincides with the Thompson metric when a is positive.
Fil: Fongi, Guillermina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina - Materia
-
DIFFERENTIAL GEOMETRY
SELFADJOINT OPERATORS
THOMPSON PART METRIC - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
.jpg)
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/100034
Ver los metadatos del registro completo
| id |
CONICETDig_385c1b0e32691f84cfadf2b0d2156951 |
|---|---|
| oai_identifier_str |
oai:ri.conicet.gov.ar:11336/100034 |
| network_acronym_str |
CONICETDig |
| repository_id_str |
3498 |
| network_name_str |
CONICET Digital (CONICET) |
| spelling |
Differential structure of the Thompson components of selfadjoint operatorsFongi, GuillerminaMaestripieri, Alejandra LauraDIFFERENTIAL GEOMETRYSELFADJOINT OPERATORSTHOMPSON PART METRIChttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Different equivalence relations are defined in the set L(H)s of self- adjoint operators of a Hilbert space H in order to extend a very well known relation in the cone of positive operators. As in the positive case, for a G L(H)s the equivalence class Ca admits a differential structure, which is compatible with a complete metric defined on Ca. This metric coincides with the Thompson metric when a is positive.Fil: Fongi, Guillermina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaAmerican Mathematical Society2008-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/100034Fongi, Guillermina; Maestripieri, Alejandra Laura; Differential structure of the Thompson components of selfadjoint operators; American Mathematical Society; Proceedings of the American Mathematical Society; 136; 2; 2-2008; 613-6220002-99391088-6826CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2008-136-02/S0002-9939-07-09133-2/info:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9939-07-09133-2info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2008-136-02/S0002-9939-07-09133-2/S0002-9939-07-09133-2.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-10-22T11:47:07Zoai:ri.conicet.gov.ar:11336/100034instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-10-22 11:47:07.803CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
| dc.title.none.fl_str_mv |
Differential structure of the Thompson components of selfadjoint operators |
| title |
Differential structure of the Thompson components of selfadjoint operators |
| spellingShingle |
Differential structure of the Thompson components of selfadjoint operators Fongi, Guillermina DIFFERENTIAL GEOMETRY SELFADJOINT OPERATORS THOMPSON PART METRIC |
| title_short |
Differential structure of the Thompson components of selfadjoint operators |
| title_full |
Differential structure of the Thompson components of selfadjoint operators |
| title_fullStr |
Differential structure of the Thompson components of selfadjoint operators |
| title_full_unstemmed |
Differential structure of the Thompson components of selfadjoint operators |
| title_sort |
Differential structure of the Thompson components of selfadjoint operators |
| dc.creator.none.fl_str_mv |
Fongi, Guillermina Maestripieri, Alejandra Laura |
| author |
Fongi, Guillermina |
| author_facet |
Fongi, Guillermina Maestripieri, Alejandra Laura |
| author_role |
author |
| author2 |
Maestripieri, Alejandra Laura |
| author2_role |
author |
| dc.subject.none.fl_str_mv |
DIFFERENTIAL GEOMETRY SELFADJOINT OPERATORS THOMPSON PART METRIC |
| topic |
DIFFERENTIAL GEOMETRY SELFADJOINT OPERATORS THOMPSON PART METRIC |
| purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
| dc.description.none.fl_txt_mv |
Different equivalence relations are defined in the set L(H)s of self- adjoint operators of a Hilbert space H in order to extend a very well known relation in the cone of positive operators. As in the positive case, for a G L(H)s the equivalence class Ca admits a differential structure, which is compatible with a complete metric defined on Ca. This metric coincides with the Thompson metric when a is positive. Fil: Fongi, Guillermina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina |
| description |
Different equivalence relations are defined in the set L(H)s of self- adjoint operators of a Hilbert space H in order to extend a very well known relation in the cone of positive operators. As in the positive case, for a G L(H)s the equivalence class Ca admits a differential structure, which is compatible with a complete metric defined on Ca. This metric coincides with the Thompson metric when a is positive. |
| publishDate |
2008 |
| dc.date.none.fl_str_mv |
2008-02 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/100034 Fongi, Guillermina; Maestripieri, Alejandra Laura; Differential structure of the Thompson components of selfadjoint operators; American Mathematical Society; Proceedings of the American Mathematical Society; 136; 2; 2-2008; 613-622 0002-9939 1088-6826 CONICET Digital CONICET |
| url |
http://hdl.handle.net/11336/100034 |
| identifier_str_mv |
Fongi, Guillermina; Maestripieri, Alejandra Laura; Differential structure of the Thompson components of selfadjoint operators; American Mathematical Society; Proceedings of the American Mathematical Society; 136; 2; 2-2008; 613-622 0002-9939 1088-6826 CONICET Digital CONICET |
| dc.language.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2008-136-02/S0002-9939-07-09133-2/ info:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9939-07-09133-2 info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2008-136-02/S0002-9939-07-09133-2/S0002-9939-07-09133-2.pdf |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
| dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
American Mathematical Society |
| publisher.none.fl_str_mv |
American Mathematical Society |
| dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
| reponame_str |
CONICET Digital (CONICET) |
| collection |
CONICET Digital (CONICET) |
| instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
| repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
| _version_ |
1846782175647629312 |
| score |
12.982451 |