Differential structure of the Thompson components of selfadjoint operators

Autores
Fongi, Guillermina; Maestripieri, Alejandra Laura
Año de publicación
2008
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Different equivalence relations are defined in the set L(H)s of self- adjoint operators of a Hilbert space H in order to extend a very well known relation in the cone of positive operators. As in the positive case, for a G L(H)s the equivalence class Ca admits a differential structure, which is compatible with a complete metric defined on Ca. This metric coincides with the Thompson metric when a is positive.
Fil: Fongi, Guillermina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Materia
DIFFERENTIAL GEOMETRY
SELFADJOINT OPERATORS
THOMPSON PART METRIC
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/100034

id CONICETDig_385c1b0e32691f84cfadf2b0d2156951
oai_identifier_str oai:ri.conicet.gov.ar:11336/100034
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Differential structure of the Thompson components of selfadjoint operatorsFongi, GuillerminaMaestripieri, Alejandra LauraDIFFERENTIAL GEOMETRYSELFADJOINT OPERATORSTHOMPSON PART METRIChttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Different equivalence relations are defined in the set L(H)s of self- adjoint operators of a Hilbert space H in order to extend a very well known relation in the cone of positive operators. As in the positive case, for a G L(H)s the equivalence class Ca admits a differential structure, which is compatible with a complete metric defined on Ca. This metric coincides with the Thompson metric when a is positive.Fil: Fongi, Guillermina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaAmerican Mathematical Society2008-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/100034Fongi, Guillermina; Maestripieri, Alejandra Laura; Differential structure of the Thompson components of selfadjoint operators; American Mathematical Society; Proceedings of the American Mathematical Society; 136; 2; 2-2008; 613-6220002-99391088-6826CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2008-136-02/S0002-9939-07-09133-2/info:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9939-07-09133-2info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2008-136-02/S0002-9939-07-09133-2/S0002-9939-07-09133-2.pdfinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T10:02:02Zoai:ri.conicet.gov.ar:11336/100034instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 10:02:02.335CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Differential structure of the Thompson components of selfadjoint operators
title Differential structure of the Thompson components of selfadjoint operators
spellingShingle Differential structure of the Thompson components of selfadjoint operators
Fongi, Guillermina
DIFFERENTIAL GEOMETRY
SELFADJOINT OPERATORS
THOMPSON PART METRIC
title_short Differential structure of the Thompson components of selfadjoint operators
title_full Differential structure of the Thompson components of selfadjoint operators
title_fullStr Differential structure of the Thompson components of selfadjoint operators
title_full_unstemmed Differential structure of the Thompson components of selfadjoint operators
title_sort Differential structure of the Thompson components of selfadjoint operators
dc.creator.none.fl_str_mv Fongi, Guillermina
Maestripieri, Alejandra Laura
author Fongi, Guillermina
author_facet Fongi, Guillermina
Maestripieri, Alejandra Laura
author_role author
author2 Maestripieri, Alejandra Laura
author2_role author
dc.subject.none.fl_str_mv DIFFERENTIAL GEOMETRY
SELFADJOINT OPERATORS
THOMPSON PART METRIC
topic DIFFERENTIAL GEOMETRY
SELFADJOINT OPERATORS
THOMPSON PART METRIC
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Different equivalence relations are defined in the set L(H)s of self- adjoint operators of a Hilbert space H in order to extend a very well known relation in the cone of positive operators. As in the positive case, for a G L(H)s the equivalence class Ca admits a differential structure, which is compatible with a complete metric defined on Ca. This metric coincides with the Thompson metric when a is positive.
Fil: Fongi, Guillermina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
description Different equivalence relations are defined in the set L(H)s of self- adjoint operators of a Hilbert space H in order to extend a very well known relation in the cone of positive operators. As in the positive case, for a G L(H)s the equivalence class Ca admits a differential structure, which is compatible with a complete metric defined on Ca. This metric coincides with the Thompson metric when a is positive.
publishDate 2008
dc.date.none.fl_str_mv 2008-02
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/100034
Fongi, Guillermina; Maestripieri, Alejandra Laura; Differential structure of the Thompson components of selfadjoint operators; American Mathematical Society; Proceedings of the American Mathematical Society; 136; 2; 2-2008; 613-622
0002-9939
1088-6826
CONICET Digital
CONICET
url http://hdl.handle.net/11336/100034
identifier_str_mv Fongi, Guillermina; Maestripieri, Alejandra Laura; Differential structure of the Thompson components of selfadjoint operators; American Mathematical Society; Proceedings of the American Mathematical Society; 136; 2; 2-2008; 613-622
0002-9939
1088-6826
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2008-136-02/S0002-9939-07-09133-2/
info:eu-repo/semantics/altIdentifier/doi/10.1090/S0002-9939-07-09133-2
info:eu-repo/semantics/altIdentifier/url/https://www.ams.org/journals/proc/2008-136-02/S0002-9939-07-09133-2/S0002-9939-07-09133-2.pdf
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv American Mathematical Society
publisher.none.fl_str_mv American Mathematical Society
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269732013604864
score 13.13397