Estructura métrica y diferencial del conjunto de operadores autoadjuntos en un espacio de Hilbert

Autores
Fongi, Guillermina
Año de publicación
2010
Idioma
español castellano
Tipo de recurso
tesis doctoral
Estado
versión publicada
Colaborador/a o director/a de tesis
Maestripieri, Alejandra
Descripción
En este trabajo estudiamos aspectos métricos y geométricos del conjunto de operadores autoadjuntos en un espacio de Hilbert H. Extendemos la relación de equivalencia definida por A. C. Thompson en un cono convexo de un espacio de Banach, al conjunto de operadores autoadjuntos. Definimos una métrica completa en cada clase de equivalencia o componente de Thompson, que resulta compatible con la estructura diferencial de la componente. Estudiamos además la órbita de congruencia de un operador autoadjunto a. Describimos la órbita de a en términos de su descomposición polar y de su descomposición positiva ortogonal. Si a es de rango cerrado, dotamos a la órbita de a de una estructura de variedad diferencial. Finalmente, estudiamos descomposiciones de operadores autoadjuntos como diferencia de dos operadores positivos de manera que el ángulo mínimo entre sus rangos sea positivo, que llamamos descomposiciones positivas. Mostramos que las descomposiciones positivas de un operador autoadjunto a están relacionadas con las descomposiciones canónicas del espacio (H, menor , mayor a), donde menor , mayor a es una métrica indefinida asociada al operador a. Como aplicación, caracterizamos la órbita de congruencia de a en términos de sus descomposiciones positivas.
In this thesis, we study metrical and geometrical aspects of the set of selfadjoint operators on a Hilbert space H. We extend the equivalence relation, defined by A.C. Thompson on a closed convex cone of a Banach space, to the set of selfadjoint operators. We define a complete metric on each equivalence class or Thompson component, compatible with the differential structure of the component. We also study the orbit of congruence of a selfajoint operator a. We describe the orbit of a in terms of its polar decomposition and its positive ortogonal decomposition. If a is a closed range operator, we provide the orbit of a with a structure of differential manifold. Finally, we study decompositions of selfadjoint operators as a difference of two positive operators such that the minimal angle of their ranges is positive, called positive decompositions. We show that the positive decompositions of a selfadjoint operator a are related to the canonical decompositions of the space (H, menor , mayor a), where menor , mayor a is an indefinite metric associated to a. As an application, we characterize the orbit of congruence of a in terms of its positive decompositions.
Fil: Fongi, Guillermina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
Materia
OPERADORES AUTOADJUNTOS
METRICA DE THOMPSON
GEOMETRIA DIFERENCIAL
CONGRUENCIA DE OPERADORES
METRICA INDEFINIDA
SELFADJOINT OPERATORS
THOMPSON PART METRIC
DIFFERENTIAL GEOMETRY
CONGRUENCE OF OPERATORS
INDEFINITE METRIC
HOMPSON PART METRIC
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar
Repositorio
Biblioteca Digital (UBA-FCEN)
Institución
Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
OAI Identificador
tesis:tesis_n4591_Fongi

id BDUBAFCEN_6a2fbec1cd09ba4ab0a8998b571ed36f
oai_identifier_str tesis:tesis_n4591_Fongi
network_acronym_str BDUBAFCEN
repository_id_str 1896
network_name_str Biblioteca Digital (UBA-FCEN)
spelling Estructura métrica y diferencial del conjunto de operadores autoadjuntos en un espacio de HilbertMetric and differential structure of the set of selfadjoint operators on a Hilbert spaceFongi, GuillerminaOPERADORES AUTOADJUNTOSMETRICA DE THOMPSONGEOMETRIA DIFERENCIALCONGRUENCIA DE OPERADORESMETRICA INDEFINIDASELFADJOINT OPERATORSTHOMPSON PART METRICDIFFERENTIAL GEOMETRYCONGRUENCE OF OPERATORSINDEFINITE METRICHOMPSON PART METRICEn este trabajo estudiamos aspectos métricos y geométricos del conjunto de operadores autoadjuntos en un espacio de Hilbert H. Extendemos la relación de equivalencia definida por A. C. Thompson en un cono convexo de un espacio de Banach, al conjunto de operadores autoadjuntos. Definimos una métrica completa en cada clase de equivalencia o componente de Thompson, que resulta compatible con la estructura diferencial de la componente. Estudiamos además la órbita de congruencia de un operador autoadjunto a. Describimos la órbita de a en términos de su descomposición polar y de su descomposición positiva ortogonal. Si a es de rango cerrado, dotamos a la órbita de a de una estructura de variedad diferencial. Finalmente, estudiamos descomposiciones de operadores autoadjuntos como diferencia de dos operadores positivos de manera que el ángulo mínimo entre sus rangos sea positivo, que llamamos descomposiciones positivas. Mostramos que las descomposiciones positivas de un operador autoadjunto a están relacionadas con las descomposiciones canónicas del espacio (H, menor , mayor a), donde menor , mayor a es una métrica indefinida asociada al operador a. Como aplicación, caracterizamos la órbita de congruencia de a en términos de sus descomposiciones positivas.In this thesis, we study metrical and geometrical aspects of the set of selfadjoint operators on a Hilbert space H. We extend the equivalence relation, defined by A.C. Thompson on a closed convex cone of a Banach space, to the set of selfadjoint operators. We define a complete metric on each equivalence class or Thompson component, compatible with the differential structure of the component. We also study the orbit of congruence of a selfajoint operator a. We describe the orbit of a in terms of its polar decomposition and its positive ortogonal decomposition. If a is a closed range operator, we provide the orbit of a with a structure of differential manifold. Finally, we study decompositions of selfadjoint operators as a difference of two positive operators such that the minimal angle of their ranges is positive, called positive decompositions. We show that the positive decompositions of a selfadjoint operator a are related to the canonical decompositions of the space (H, menor , mayor a), where menor , mayor a is an indefinite metric associated to a. As an application, we characterize the orbit of congruence of a in terms of its positive decompositions.Fil: Fongi, Guillermina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Universidad de Buenos Aires. Facultad de Ciencias Exactas y NaturalesMaestripieri, Alejandra2010info:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_db06info:ar-repo/semantics/tesisDoctoralapplication/pdfhttps://hdl.handle.net/20.500.12110/tesis_n4591_Fongispainfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/arreponame:Biblioteca Digital (UBA-FCEN)instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesinstacron:UBA-FCEN2025-10-23T11:18:11Ztesis:tesis_n4591_FongiInstitucionalhttps://digital.bl.fcen.uba.ar/Universidad públicaNo correspondehttps://digital.bl.fcen.uba.ar/cgi-bin/oaiserver.cgiana@bl.fcen.uba.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:18962025-10-23 11:18:12.955Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturalesfalse
dc.title.none.fl_str_mv Estructura métrica y diferencial del conjunto de operadores autoadjuntos en un espacio de Hilbert
Metric and differential structure of the set of selfadjoint operators on a Hilbert space
title Estructura métrica y diferencial del conjunto de operadores autoadjuntos en un espacio de Hilbert
spellingShingle Estructura métrica y diferencial del conjunto de operadores autoadjuntos en un espacio de Hilbert
Fongi, Guillermina
OPERADORES AUTOADJUNTOS
METRICA DE THOMPSON
GEOMETRIA DIFERENCIAL
CONGRUENCIA DE OPERADORES
METRICA INDEFINIDA
SELFADJOINT OPERATORS
THOMPSON PART METRIC
DIFFERENTIAL GEOMETRY
CONGRUENCE OF OPERATORS
INDEFINITE METRIC
HOMPSON PART METRIC
title_short Estructura métrica y diferencial del conjunto de operadores autoadjuntos en un espacio de Hilbert
title_full Estructura métrica y diferencial del conjunto de operadores autoadjuntos en un espacio de Hilbert
title_fullStr Estructura métrica y diferencial del conjunto de operadores autoadjuntos en un espacio de Hilbert
title_full_unstemmed Estructura métrica y diferencial del conjunto de operadores autoadjuntos en un espacio de Hilbert
title_sort Estructura métrica y diferencial del conjunto de operadores autoadjuntos en un espacio de Hilbert
dc.creator.none.fl_str_mv Fongi, Guillermina
author Fongi, Guillermina
author_facet Fongi, Guillermina
author_role author
dc.contributor.none.fl_str_mv Maestripieri, Alejandra
dc.subject.none.fl_str_mv OPERADORES AUTOADJUNTOS
METRICA DE THOMPSON
GEOMETRIA DIFERENCIAL
CONGRUENCIA DE OPERADORES
METRICA INDEFINIDA
SELFADJOINT OPERATORS
THOMPSON PART METRIC
DIFFERENTIAL GEOMETRY
CONGRUENCE OF OPERATORS
INDEFINITE METRIC
HOMPSON PART METRIC
topic OPERADORES AUTOADJUNTOS
METRICA DE THOMPSON
GEOMETRIA DIFERENCIAL
CONGRUENCIA DE OPERADORES
METRICA INDEFINIDA
SELFADJOINT OPERATORS
THOMPSON PART METRIC
DIFFERENTIAL GEOMETRY
CONGRUENCE OF OPERATORS
INDEFINITE METRIC
HOMPSON PART METRIC
dc.description.none.fl_txt_mv En este trabajo estudiamos aspectos métricos y geométricos del conjunto de operadores autoadjuntos en un espacio de Hilbert H. Extendemos la relación de equivalencia definida por A. C. Thompson en un cono convexo de un espacio de Banach, al conjunto de operadores autoadjuntos. Definimos una métrica completa en cada clase de equivalencia o componente de Thompson, que resulta compatible con la estructura diferencial de la componente. Estudiamos además la órbita de congruencia de un operador autoadjunto a. Describimos la órbita de a en términos de su descomposición polar y de su descomposición positiva ortogonal. Si a es de rango cerrado, dotamos a la órbita de a de una estructura de variedad diferencial. Finalmente, estudiamos descomposiciones de operadores autoadjuntos como diferencia de dos operadores positivos de manera que el ángulo mínimo entre sus rangos sea positivo, que llamamos descomposiciones positivas. Mostramos que las descomposiciones positivas de un operador autoadjunto a están relacionadas con las descomposiciones canónicas del espacio (H, menor , mayor a), donde menor , mayor a es una métrica indefinida asociada al operador a. Como aplicación, caracterizamos la órbita de congruencia de a en términos de sus descomposiciones positivas.
In this thesis, we study metrical and geometrical aspects of the set of selfadjoint operators on a Hilbert space H. We extend the equivalence relation, defined by A.C. Thompson on a closed convex cone of a Banach space, to the set of selfadjoint operators. We define a complete metric on each equivalence class or Thompson component, compatible with the differential structure of the component. We also study the orbit of congruence of a selfajoint operator a. We describe the orbit of a in terms of its polar decomposition and its positive ortogonal decomposition. If a is a closed range operator, we provide the orbit of a with a structure of differential manifold. Finally, we study decompositions of selfadjoint operators as a difference of two positive operators such that the minimal angle of their ranges is positive, called positive decompositions. We show that the positive decompositions of a selfadjoint operator a are related to the canonical decompositions of the space (H, menor , mayor a), where menor , mayor a is an indefinite metric associated to a. As an application, we characterize the orbit of congruence of a in terms of its positive decompositions.
Fil: Fongi, Guillermina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
description En este trabajo estudiamos aspectos métricos y geométricos del conjunto de operadores autoadjuntos en un espacio de Hilbert H. Extendemos la relación de equivalencia definida por A. C. Thompson en un cono convexo de un espacio de Banach, al conjunto de operadores autoadjuntos. Definimos una métrica completa en cada clase de equivalencia o componente de Thompson, que resulta compatible con la estructura diferencial de la componente. Estudiamos además la órbita de congruencia de un operador autoadjunto a. Describimos la órbita de a en términos de su descomposición polar y de su descomposición positiva ortogonal. Si a es de rango cerrado, dotamos a la órbita de a de una estructura de variedad diferencial. Finalmente, estudiamos descomposiciones de operadores autoadjuntos como diferencia de dos operadores positivos de manera que el ángulo mínimo entre sus rangos sea positivo, que llamamos descomposiciones positivas. Mostramos que las descomposiciones positivas de un operador autoadjunto a están relacionadas con las descomposiciones canónicas del espacio (H, menor , mayor a), donde menor , mayor a es una métrica indefinida asociada al operador a. Como aplicación, caracterizamos la órbita de congruencia de a en términos de sus descomposiciones positivas.
publishDate 2010
dc.date.none.fl_str_mv 2010
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_db06
info:ar-repo/semantics/tesisDoctoral
format doctoralThesis
status_str publishedVersion
dc.identifier.none.fl_str_mv https://hdl.handle.net/20.500.12110/tesis_n4591_Fongi
url https://hdl.handle.net/20.500.12110/tesis_n4591_Fongi
dc.language.none.fl_str_mv spa
language spa
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales
publisher.none.fl_str_mv Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales
dc.source.none.fl_str_mv reponame:Biblioteca Digital (UBA-FCEN)
instname:Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron:UBA-FCEN
reponame_str Biblioteca Digital (UBA-FCEN)
collection Biblioteca Digital (UBA-FCEN)
instname_str Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
instacron_str UBA-FCEN
institution UBA-FCEN
repository.name.fl_str_mv Biblioteca Digital (UBA-FCEN) - Universidad Nacional de Buenos Aires. Facultad de Ciencias Exactas y Naturales
repository.mail.fl_str_mv ana@bl.fcen.uba.ar
_version_ 1846784874432692224
score 12.982451