Parametrizing projections with selfadjoint operators
- Autores
- Andruchow, Esteban
- Año de publicación
- 2015
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Let H=H+⊕H− be an orthogonal decomposition of a Hilbert space, with E+, E− the corresponding projections. Let A be a selfadjoint operator in H which is codiagonal with respect to this decomposition (i.e. A(H+)⊂H− and A(H−)⊂H+). We consider three maps which assign a selfadjoint projection to A: 1.The graph map Γ : Γ(A)=projection onto the graph of A|H+. 2.The exponential map of the Grassmann manifold P of H (the space of selfadjoint projections in H) at E+: . 3.The map p, called here the Davis' map, based on a result by Chandler Davis, characterizing the selfadjoint contractions which are the difference of two projections. The ranges of these maps are studied and compared. Using Davis' map, one can solve the following operator matrix completion problem: given a contraction a:H−→H+, complete the matrix to a projection P , in order that ‖P−E+‖ is minimal.
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; Argentina - Materia
-
Projection
Selfadjoint Operator - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/3381
Ver los metadatos del registro completo
id |
CONICETDig_d58a7e170b5c04ed9c94362d825241d2 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/3381 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Parametrizing projections with selfadjoint operatorsAndruchow, EstebanProjectionSelfadjoint Operatorhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let H=H+⊕H− be an orthogonal decomposition of a Hilbert space, with E+, E− the corresponding projections. Let A be a selfadjoint operator in H which is codiagonal with respect to this decomposition (i.e. A(H+)⊂H− and A(H−)⊂H+). We consider three maps which assign a selfadjoint projection to A: 1.The graph map Γ : Γ(A)=projection onto the graph of A|H+. 2.The exponential map of the Grassmann manifold P of H (the space of selfadjoint projections in H) at E+: . 3.The map p, called here the Davis' map, based on a result by Chandler Davis, characterizing the selfadjoint contractions which are the difference of two projections. The ranges of these maps are studied and compared. Using Davis' map, one can solve the following operator matrix completion problem: given a contraction a:H−→H+, complete the matrix to a projection P , in order that ‖P−E+‖ is minimal.Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; ArgentinaElsevier Science Inc2015-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/3381Andruchow, Esteban; Parametrizing projections with selfadjoint operators; Elsevier Science Inc; Linear Algebra And Its Applications; 466; 1-2015; 307-3280024-3795enginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0024379514006983info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2014.10.029info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:20:07Zoai:ri.conicet.gov.ar:11336/3381instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:20:07.555CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Parametrizing projections with selfadjoint operators |
title |
Parametrizing projections with selfadjoint operators |
spellingShingle |
Parametrizing projections with selfadjoint operators Andruchow, Esteban Projection Selfadjoint Operator |
title_short |
Parametrizing projections with selfadjoint operators |
title_full |
Parametrizing projections with selfadjoint operators |
title_fullStr |
Parametrizing projections with selfadjoint operators |
title_full_unstemmed |
Parametrizing projections with selfadjoint operators |
title_sort |
Parametrizing projections with selfadjoint operators |
dc.creator.none.fl_str_mv |
Andruchow, Esteban |
author |
Andruchow, Esteban |
author_facet |
Andruchow, Esteban |
author_role |
author |
dc.subject.none.fl_str_mv |
Projection Selfadjoint Operator |
topic |
Projection Selfadjoint Operator |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Let H=H+⊕H− be an orthogonal decomposition of a Hilbert space, with E+, E− the corresponding projections. Let A be a selfadjoint operator in H which is codiagonal with respect to this decomposition (i.e. A(H+)⊂H− and A(H−)⊂H+). We consider three maps which assign a selfadjoint projection to A: 1.The graph map Γ : Γ(A)=projection onto the graph of A|H+. 2.The exponential map of the Grassmann manifold P of H (the space of selfadjoint projections in H) at E+: . 3.The map p, called here the Davis' map, based on a result by Chandler Davis, characterizing the selfadjoint contractions which are the difference of two projections. The ranges of these maps are studied and compared. Using Davis' map, one can solve the following operator matrix completion problem: given a contraction a:H−→H+, complete the matrix to a projection P , in order that ‖P−E+‖ is minimal. Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; Argentina |
description |
Let H=H+⊕H− be an orthogonal decomposition of a Hilbert space, with E+, E− the corresponding projections. Let A be a selfadjoint operator in H which is codiagonal with respect to this decomposition (i.e. A(H+)⊂H− and A(H−)⊂H+). We consider three maps which assign a selfadjoint projection to A: 1.The graph map Γ : Γ(A)=projection onto the graph of A|H+. 2.The exponential map of the Grassmann manifold P of H (the space of selfadjoint projections in H) at E+: . 3.The map p, called here the Davis' map, based on a result by Chandler Davis, characterizing the selfadjoint contractions which are the difference of two projections. The ranges of these maps are studied and compared. Using Davis' map, one can solve the following operator matrix completion problem: given a contraction a:H−→H+, complete the matrix to a projection P , in order that ‖P−E+‖ is minimal. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-01 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/3381 Andruchow, Esteban; Parametrizing projections with selfadjoint operators; Elsevier Science Inc; Linear Algebra And Its Applications; 466; 1-2015; 307-328 0024-3795 |
url |
http://hdl.handle.net/11336/3381 |
identifier_str_mv |
Andruchow, Esteban; Parametrizing projections with selfadjoint operators; Elsevier Science Inc; Linear Algebra And Its Applications; 466; 1-2015; 307-328 0024-3795 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0024379514006983 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2014.10.029 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science Inc |
publisher.none.fl_str_mv |
Elsevier Science Inc |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842981102552088576 |
score |
12.48226 |