Parametrizing projections with selfadjoint operators

Autores
Andruchow, Esteban
Año de publicación
2015
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Let H=H+⊕H− be an orthogonal decomposition of a Hilbert space, with E+, E− the corresponding projections. Let A be a selfadjoint operator in H which is codiagonal with respect to this decomposition (i.e. A(H+)⊂H− and A(H−)⊂H+). We consider three maps which assign a selfadjoint projection to A: 1.The graph map Γ : Γ(A)=projection onto the graph of A|H+. 2.The exponential map of the Grassmann manifold P of H (the space of selfadjoint projections in H) at E+: . 3.The map p, called here the Davis' map, based on a result by Chandler Davis, characterizing the selfadjoint contractions which are the difference of two projections. The ranges of these maps are studied and compared. Using Davis' map, one can solve the following operator matrix completion problem: given a contraction a:H−→H+, complete the matrix to a projection P , in order that ‖P−E+‖ is minimal.
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; Argentina
Materia
Projection
Selfadjoint Operator
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/3381

id CONICETDig_d58a7e170b5c04ed9c94362d825241d2
oai_identifier_str oai:ri.conicet.gov.ar:11336/3381
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Parametrizing projections with selfadjoint operatorsAndruchow, EstebanProjectionSelfadjoint Operatorhttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Let H=H+⊕H− be an orthogonal decomposition of a Hilbert space, with E+, E− the corresponding projections. Let A be a selfadjoint operator in H which is codiagonal with respect to this decomposition (i.e. A(H+)⊂H− and A(H−)⊂H+). We consider three maps which assign a selfadjoint projection to A: 1.The graph map Γ : Γ(A)=projection onto the graph of A|H+. 2.The exponential map of the Grassmann manifold P of H (the space of selfadjoint projections in H) at E+: . 3.The map p, called here the Davis' map, based on a result by Chandler Davis, characterizing the selfadjoint contractions which are the difference of two projections. The ranges of these maps are studied and compared. Using Davis' map, one can solve the following operator matrix completion problem: given a contraction a:H−→H+, complete the matrix to a projection P , in order that ‖P−E+‖ is minimal.Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; ArgentinaElsevier Science Inc2015-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/3381Andruchow, Esteban; Parametrizing projections with selfadjoint operators; Elsevier Science Inc; Linear Algebra And Its Applications; 466; 1-2015; 307-3280024-3795enginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0024379514006983info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2014.10.029info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-10T13:20:07Zoai:ri.conicet.gov.ar:11336/3381instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-10 13:20:07.555CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Parametrizing projections with selfadjoint operators
title Parametrizing projections with selfadjoint operators
spellingShingle Parametrizing projections with selfadjoint operators
Andruchow, Esteban
Projection
Selfadjoint Operator
title_short Parametrizing projections with selfadjoint operators
title_full Parametrizing projections with selfadjoint operators
title_fullStr Parametrizing projections with selfadjoint operators
title_full_unstemmed Parametrizing projections with selfadjoint operators
title_sort Parametrizing projections with selfadjoint operators
dc.creator.none.fl_str_mv Andruchow, Esteban
author Andruchow, Esteban
author_facet Andruchow, Esteban
author_role author
dc.subject.none.fl_str_mv Projection
Selfadjoint Operator
topic Projection
Selfadjoint Operator
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Let H=H+⊕H− be an orthogonal decomposition of a Hilbert space, with E+, E− the corresponding projections. Let A be a selfadjoint operator in H which is codiagonal with respect to this decomposition (i.e. A(H+)⊂H− and A(H−)⊂H+). We consider three maps which assign a selfadjoint projection to A: 1.The graph map Γ : Γ(A)=projection onto the graph of A|H+. 2.The exponential map of the Grassmann manifold P of H (the space of selfadjoint projections in H) at E+: . 3.The map p, called here the Davis' map, based on a result by Chandler Davis, characterizing the selfadjoint contractions which are the difference of two projections. The ranges of these maps are studied and compared. Using Davis' map, one can solve the following operator matrix completion problem: given a contraction a:H−→H+, complete the matrix to a projection P , in order that ‖P−E+‖ is minimal.
Fil: Andruchow, Esteban. Universidad Nacional de General Sarmiento. Instituto de Ciencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática; Argentina
description Let H=H+⊕H− be an orthogonal decomposition of a Hilbert space, with E+, E− the corresponding projections. Let A be a selfadjoint operator in H which is codiagonal with respect to this decomposition (i.e. A(H+)⊂H− and A(H−)⊂H+). We consider three maps which assign a selfadjoint projection to A: 1.The graph map Γ : Γ(A)=projection onto the graph of A|H+. 2.The exponential map of the Grassmann manifold P of H (the space of selfadjoint projections in H) at E+: . 3.The map p, called here the Davis' map, based on a result by Chandler Davis, characterizing the selfadjoint contractions which are the difference of two projections. The ranges of these maps are studied and compared. Using Davis' map, one can solve the following operator matrix completion problem: given a contraction a:H−→H+, complete the matrix to a projection P , in order that ‖P−E+‖ is minimal.
publishDate 2015
dc.date.none.fl_str_mv 2015-01
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/3381
Andruchow, Esteban; Parametrizing projections with selfadjoint operators; Elsevier Science Inc; Linear Algebra And Its Applications; 466; 1-2015; 307-328
0024-3795
url http://hdl.handle.net/11336/3381
identifier_str_mv Andruchow, Esteban; Parametrizing projections with selfadjoint operators; Elsevier Science Inc; Linear Algebra And Its Applications; 466; 1-2015; 307-328
0024-3795
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0024379514006983
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.laa.2014.10.029
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Elsevier Science Inc
publisher.none.fl_str_mv Elsevier Science Inc
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842981102552088576
score 12.48226