Positive decompositions of selfadjoint operators

Autores
Fongi, Guillermina; Maestripieri, Alejandra Laura
Año de publicación
2010
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Given a linear bounded selfadjoint operator a on a complex separable Hilbert space H, we study the decompositions of a as a difference of two positive operators whose ranges satisfy an angle condition. These decompositions are related to the canonical decompositions of the indefinite metric space (H, 〈, 〉a), associated to a. As an application, we characterize the orbit of congruence of a in terms of its positive decompositions.
Fil: Fongi, Guillermina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Materia
CONGRUENCE OF OPERATORS
INDEFINITE METRIC SPACES
SELFADJOINT OPERATORS
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/93030

id CONICETDig_0d0a2b4c769dec808fb51a38a11265ab
oai_identifier_str oai:ri.conicet.gov.ar:11336/93030
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Positive decompositions of selfadjoint operatorsFongi, GuillerminaMaestripieri, Alejandra LauraCONGRUENCE OF OPERATORSINDEFINITE METRIC SPACESSELFADJOINT OPERATORShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given a linear bounded selfadjoint operator a on a complex separable Hilbert space H, we study the decompositions of a as a difference of two positive operators whose ranges satisfy an angle condition. These decompositions are related to the canonical decompositions of the indefinite metric space (H, 〈, 〉a), associated to a. As an application, we characterize the orbit of congruence of a in terms of its positive decompositions.Fil: Fongi, Guillermina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaBirkhauser Verlag Ag2010-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/93030Fongi, Guillermina; Maestripieri, Alejandra Laura; Positive decompositions of selfadjoint operators; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 67; 1; 5-2010; 109-1210378-620XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00020-010-1773-zinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00020-010-1773-zinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:59:28Zoai:ri.conicet.gov.ar:11336/93030instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:59:28.636CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Positive decompositions of selfadjoint operators
title Positive decompositions of selfadjoint operators
spellingShingle Positive decompositions of selfadjoint operators
Fongi, Guillermina
CONGRUENCE OF OPERATORS
INDEFINITE METRIC SPACES
SELFADJOINT OPERATORS
title_short Positive decompositions of selfadjoint operators
title_full Positive decompositions of selfadjoint operators
title_fullStr Positive decompositions of selfadjoint operators
title_full_unstemmed Positive decompositions of selfadjoint operators
title_sort Positive decompositions of selfadjoint operators
dc.creator.none.fl_str_mv Fongi, Guillermina
Maestripieri, Alejandra Laura
author Fongi, Guillermina
author_facet Fongi, Guillermina
Maestripieri, Alejandra Laura
author_role author
author2 Maestripieri, Alejandra Laura
author2_role author
dc.subject.none.fl_str_mv CONGRUENCE OF OPERATORS
INDEFINITE METRIC SPACES
SELFADJOINT OPERATORS
topic CONGRUENCE OF OPERATORS
INDEFINITE METRIC SPACES
SELFADJOINT OPERATORS
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Given a linear bounded selfadjoint operator a on a complex separable Hilbert space H, we study the decompositions of a as a difference of two positive operators whose ranges satisfy an angle condition. These decompositions are related to the canonical decompositions of the indefinite metric space (H, 〈, 〉a), associated to a. As an application, we characterize the orbit of congruence of a in terms of its positive decompositions.
Fil: Fongi, Guillermina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
description Given a linear bounded selfadjoint operator a on a complex separable Hilbert space H, we study the decompositions of a as a difference of two positive operators whose ranges satisfy an angle condition. These decompositions are related to the canonical decompositions of the indefinite metric space (H, 〈, 〉a), associated to a. As an application, we characterize the orbit of congruence of a in terms of its positive decompositions.
publishDate 2010
dc.date.none.fl_str_mv 2010-05
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/93030
Fongi, Guillermina; Maestripieri, Alejandra Laura; Positive decompositions of selfadjoint operators; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 67; 1; 5-2010; 109-121
0378-620X
CONICET Digital
CONICET
url http://hdl.handle.net/11336/93030
identifier_str_mv Fongi, Guillermina; Maestripieri, Alejandra Laura; Positive decompositions of selfadjoint operators; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 67; 1; 5-2010; 109-121
0378-620X
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00020-010-1773-z
info:eu-repo/semantics/altIdentifier/doi/10.1007/s00020-010-1773-z
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv Birkhauser Verlag Ag
publisher.none.fl_str_mv Birkhauser Verlag Ag
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269582101839872
score 13.13397