Positive decompositions of selfadjoint operators
- Autores
- Fongi, Guillermina; Maestripieri, Alejandra Laura
- Año de publicación
- 2010
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Given a linear bounded selfadjoint operator a on a complex separable Hilbert space H, we study the decompositions of a as a difference of two positive operators whose ranges satisfy an angle condition. These decompositions are related to the canonical decompositions of the indefinite metric space (H, 〈, 〉a), associated to a. As an application, we characterize the orbit of congruence of a in terms of its positive decompositions.
Fil: Fongi, Guillermina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina - Materia
-
CONGRUENCE OF OPERATORS
INDEFINITE METRIC SPACES
SELFADJOINT OPERATORS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/93030
Ver los metadatos del registro completo
id |
CONICETDig_0d0a2b4c769dec808fb51a38a11265ab |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/93030 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Positive decompositions of selfadjoint operatorsFongi, GuillerminaMaestripieri, Alejandra LauraCONGRUENCE OF OPERATORSINDEFINITE METRIC SPACESSELFADJOINT OPERATORShttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given a linear bounded selfadjoint operator a on a complex separable Hilbert space H, we study the decompositions of a as a difference of two positive operators whose ranges satisfy an angle condition. These decompositions are related to the canonical decompositions of the indefinite metric space (H, 〈, 〉a), associated to a. As an application, we characterize the orbit of congruence of a in terms of its positive decompositions.Fil: Fongi, Guillermina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaBirkhauser Verlag Ag2010-05info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/93030Fongi, Guillermina; Maestripieri, Alejandra Laura; Positive decompositions of selfadjoint operators; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 67; 1; 5-2010; 109-1210378-620XCONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00020-010-1773-zinfo:eu-repo/semantics/altIdentifier/doi/10.1007/s00020-010-1773-zinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:59:28Zoai:ri.conicet.gov.ar:11336/93030instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:59:28.636CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Positive decompositions of selfadjoint operators |
title |
Positive decompositions of selfadjoint operators |
spellingShingle |
Positive decompositions of selfadjoint operators Fongi, Guillermina CONGRUENCE OF OPERATORS INDEFINITE METRIC SPACES SELFADJOINT OPERATORS |
title_short |
Positive decompositions of selfadjoint operators |
title_full |
Positive decompositions of selfadjoint operators |
title_fullStr |
Positive decompositions of selfadjoint operators |
title_full_unstemmed |
Positive decompositions of selfadjoint operators |
title_sort |
Positive decompositions of selfadjoint operators |
dc.creator.none.fl_str_mv |
Fongi, Guillermina Maestripieri, Alejandra Laura |
author |
Fongi, Guillermina |
author_facet |
Fongi, Guillermina Maestripieri, Alejandra Laura |
author_role |
author |
author2 |
Maestripieri, Alejandra Laura |
author2_role |
author |
dc.subject.none.fl_str_mv |
CONGRUENCE OF OPERATORS INDEFINITE METRIC SPACES SELFADJOINT OPERATORS |
topic |
CONGRUENCE OF OPERATORS INDEFINITE METRIC SPACES SELFADJOINT OPERATORS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Given a linear bounded selfadjoint operator a on a complex separable Hilbert space H, we study the decompositions of a as a difference of two positive operators whose ranges satisfy an angle condition. These decompositions are related to the canonical decompositions of the indefinite metric space (H, 〈, 〉a), associated to a. As an application, we characterize the orbit of congruence of a in terms of its positive decompositions. Fil: Fongi, Guillermina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Maestripieri, Alejandra Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina |
description |
Given a linear bounded selfadjoint operator a on a complex separable Hilbert space H, we study the decompositions of a as a difference of two positive operators whose ranges satisfy an angle condition. These decompositions are related to the canonical decompositions of the indefinite metric space (H, 〈, 〉a), associated to a. As an application, we characterize the orbit of congruence of a in terms of its positive decompositions. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010-05 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/93030 Fongi, Guillermina; Maestripieri, Alejandra Laura; Positive decompositions of selfadjoint operators; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 67; 1; 5-2010; 109-121 0378-620X CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/93030 |
identifier_str_mv |
Fongi, Guillermina; Maestripieri, Alejandra Laura; Positive decompositions of selfadjoint operators; Birkhauser Verlag Ag; Integral Equations and Operator Theory; 67; 1; 5-2010; 109-121 0378-620X CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007/s00020-010-1773-z info:eu-repo/semantics/altIdentifier/doi/10.1007/s00020-010-1773-z |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Birkhauser Verlag Ag |
publisher.none.fl_str_mv |
Birkhauser Verlag Ag |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269582101839872 |
score |
13.13397 |