Differential geometry on Thompson's components of positive operators
- Autores
- Corach, Gustavo; Maestripieri, Alejandra Laura
- Año de publicación
- 2000
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Consider the algebra L(H) of bounded linear operator on a Hilbert space H, a let L(H)^+ be the set of positiveelements of L(H). For each A ∈ L(H)^+ we study differential geometry of the Thompson component of A, C_A={B ∈ L(H)^+ : A ≤ rB and B ≤ sA for some s,r >0}. The set components is parametrized by means of all operator ranges of H. Each C_A is a differential manifold modelled in an appropiate Banach space and a homogeneous space with a natural connection. Morover, given arbitrary B,C ∈ C_A, there exists a unique geodesic with endpoints B and C. Finally, we introduce a Finsler metric on C_A for which the geodesics are short and we show that in coincides with the so-called Thompson metric.
Fil: Corach, Gustavo. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Maestripieri, Alejandra Laura. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina - Materia
-
POSITIVE OPERATOR
THOMPSON COMPONENT - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/110896
Ver los metadatos del registro completo
id |
CONICETDig_e7dc8e768843bc82cefc50ba26cbee67 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/110896 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Differential geometry on Thompson's components of positive operatorsCorach, GustavoMaestripieri, Alejandra LauraPOSITIVE OPERATORTHOMPSON COMPONENThttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Consider the algebra L(H) of bounded linear operator on a Hilbert space H, a let L(H)^+ be the set of positiveelements of L(H). For each A ∈ L(H)^+ we study differential geometry of the Thompson component of A, C_A={B ∈ L(H)^+ : A ≤ rB and B ≤ sA for some s,r >0}. The set components is parametrized by means of all operator ranges of H. Each C_A is a differential manifold modelled in an appropiate Banach space and a homogeneous space with a natural connection. Morover, given arbitrary B,C ∈ C_A, there exists a unique geodesic with endpoints B and C. Finally, we introduce a Finsler metric on C_A for which the geodesics are short and we show that in coincides with the so-called Thompson metric.Fil: Corach, Gustavo. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Maestripieri, Alejandra Laura. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaPergamon-Elsevier Science Ltd2000-02info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/110896Corach, Gustavo; Maestripieri, Alejandra Laura; Differential geometry on Thompson's components of positive operators; Pergamon-Elsevier Science Ltd; Reports On Mathematical Physics; 45; 1; 2-2000; 23-370034-4877CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0034487700888709?via%3Dihubinfo:eu-repo/semantics/altIdentifier/doi/10.1016/S0034-4877(00)88870-9info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:58:03Zoai:ri.conicet.gov.ar:11336/110896instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:58:04.151CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Differential geometry on Thompson's components of positive operators |
title |
Differential geometry on Thompson's components of positive operators |
spellingShingle |
Differential geometry on Thompson's components of positive operators Corach, Gustavo POSITIVE OPERATOR THOMPSON COMPONENT |
title_short |
Differential geometry on Thompson's components of positive operators |
title_full |
Differential geometry on Thompson's components of positive operators |
title_fullStr |
Differential geometry on Thompson's components of positive operators |
title_full_unstemmed |
Differential geometry on Thompson's components of positive operators |
title_sort |
Differential geometry on Thompson's components of positive operators |
dc.creator.none.fl_str_mv |
Corach, Gustavo Maestripieri, Alejandra Laura |
author |
Corach, Gustavo |
author_facet |
Corach, Gustavo Maestripieri, Alejandra Laura |
author_role |
author |
author2 |
Maestripieri, Alejandra Laura |
author2_role |
author |
dc.subject.none.fl_str_mv |
POSITIVE OPERATOR THOMPSON COMPONENT |
topic |
POSITIVE OPERATOR THOMPSON COMPONENT |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Consider the algebra L(H) of bounded linear operator on a Hilbert space H, a let L(H)^+ be the set of positiveelements of L(H). For each A ∈ L(H)^+ we study differential geometry of the Thompson component of A, C_A={B ∈ L(H)^+ : A ≤ rB and B ≤ sA for some s,r >0}. The set components is parametrized by means of all operator ranges of H. Each C_A is a differential manifold modelled in an appropiate Banach space and a homogeneous space with a natural connection. Morover, given arbitrary B,C ∈ C_A, there exists a unique geodesic with endpoints B and C. Finally, we introduce a Finsler metric on C_A for which the geodesics are short and we show that in coincides with the so-called Thompson metric. Fil: Corach, Gustavo. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Maestripieri, Alejandra Laura. Universidad Nacional de General Sarmiento; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina |
description |
Consider the algebra L(H) of bounded linear operator on a Hilbert space H, a let L(H)^+ be the set of positiveelements of L(H). For each A ∈ L(H)^+ we study differential geometry of the Thompson component of A, C_A={B ∈ L(H)^+ : A ≤ rB and B ≤ sA for some s,r >0}. The set components is parametrized by means of all operator ranges of H. Each C_A is a differential manifold modelled in an appropiate Banach space and a homogeneous space with a natural connection. Morover, given arbitrary B,C ∈ C_A, there exists a unique geodesic with endpoints B and C. Finally, we introduce a Finsler metric on C_A for which the geodesics are short and we show that in coincides with the so-called Thompson metric. |
publishDate |
2000 |
dc.date.none.fl_str_mv |
2000-02 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/110896 Corach, Gustavo; Maestripieri, Alejandra Laura; Differential geometry on Thompson's components of positive operators; Pergamon-Elsevier Science Ltd; Reports On Mathematical Physics; 45; 1; 2-2000; 23-37 0034-4877 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/110896 |
identifier_str_mv |
Corach, Gustavo; Maestripieri, Alejandra Laura; Differential geometry on Thompson's components of positive operators; Pergamon-Elsevier Science Ltd; Reports On Mathematical Physics; 45; 1; 2-2000; 23-37 0034-4877 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0034487700888709?via%3Dihub info:eu-repo/semantics/altIdentifier/doi/10.1016/S0034-4877(00)88870-9 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
publisher.none.fl_str_mv |
Pergamon-Elsevier Science Ltd |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269498255605760 |
score |
13.13397 |