Decomposition of selfadjoint projections in Krein spaces

Autores
Maestripieri, Alejandra Laura; Martinez Peria, Francisco Dardo
Año de publicación
2006
Idioma
inglés
Tipo de recurso
artículo
Estado
versión publicada
Descripción
Given a Hilbert space (H, ⟨ , ⟩) and a bounded selfadjoint operator B consider the sesquilinear form over H induced by B, ⟨ x , y ⟩_B=?Bx,y?, x,y ∈ H. A bounded operator T is B-selfadjoint if it is selfadjoint respect to this sesquilinear form. We study the set P(B,S) of B-selfadjoint projections with range S, where S is a closed subspace of H. We state several conditions which characterize the existence of B-selfadjoint projections with a given range; among them certain decompositions of H, R(|B|) and R(|B|^{1/2}). We also show that every B-selfadjoint projection can be factorized as the product of a B-contractive, a B-expansive and a B-isometric projection. Finally two different formulas for B-selfadjoint  projections are given.
Fil: Maestripieri, Alejandra Laura. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Martinez Peria, Francisco Dardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; Argentina
Materia
INDEFINITE METRIC
KREIN SPACE
OBLIQUE PROJECTIONS
SELFADJOINT
Nivel de accesibilidad
acceso abierto
Condiciones de uso
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
Repositorio
CONICET Digital (CONICET)
Institución
Consejo Nacional de Investigaciones Científicas y Técnicas
OAI Identificador
oai:ri.conicet.gov.ar:11336/108544

id CONICETDig_0105b16ad019148655943c6d08c37ca4
oai_identifier_str oai:ri.conicet.gov.ar:11336/108544
network_acronym_str CONICETDig
repository_id_str 3498
network_name_str CONICET Digital (CONICET)
spelling Decomposition of selfadjoint projections in Krein spacesMaestripieri, Alejandra LauraMartinez Peria, Francisco DardoINDEFINITE METRICKREIN SPACEOBLIQUE PROJECTIONSSELFADJOINThttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given a Hilbert space (H, ⟨ , ⟩) and a bounded selfadjoint operator B consider the sesquilinear form over H induced by B, ⟨ x , y ⟩_B=?Bx,y?, x,y ∈ H. A bounded operator T is B-selfadjoint if it is selfadjoint respect to this sesquilinear form. We study the set P(B,S) of B-selfadjoint projections with range S, where S is a closed subspace of H. We state several conditions which characterize the existence of B-selfadjoint projections with a given range; among them certain decompositions of H, R(|B|) and R(|B|^{1/2}). We also show that every B-selfadjoint projection can be factorized as the product of a B-contractive, a B-expansive and a B-isometric projection. Finally two different formulas for B-selfadjoint  projections are given.Fil: Maestripieri, Alejandra Laura. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Martinez Peria, Francisco Dardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; ArgentinaJános Bolyai Mathematical Institute2006-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/108544Maestripieri, Alejandra Laura; Martinez Peria, Francisco Dardo; Decomposition of selfadjoint projections in Krein spaces; János Bolyai Mathematical Institute; Acta Scientiarum Mathematicarum (Szeged); 72; 3-4; 12-2006; 611-6380001-6969CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://pub.acta.hu/acta/showCustomerArticle.action?id=4393&dataObjectType=article&returnAction=showCustomerVolume&sessionDataSetId=27d6075abbf01f54&style=info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:54:47Zoai:ri.conicet.gov.ar:11336/108544instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:54:48.071CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse
dc.title.none.fl_str_mv Decomposition of selfadjoint projections in Krein spaces
title Decomposition of selfadjoint projections in Krein spaces
spellingShingle Decomposition of selfadjoint projections in Krein spaces
Maestripieri, Alejandra Laura
INDEFINITE METRIC
KREIN SPACE
OBLIQUE PROJECTIONS
SELFADJOINT
title_short Decomposition of selfadjoint projections in Krein spaces
title_full Decomposition of selfadjoint projections in Krein spaces
title_fullStr Decomposition of selfadjoint projections in Krein spaces
title_full_unstemmed Decomposition of selfadjoint projections in Krein spaces
title_sort Decomposition of selfadjoint projections in Krein spaces
dc.creator.none.fl_str_mv Maestripieri, Alejandra Laura
Martinez Peria, Francisco Dardo
author Maestripieri, Alejandra Laura
author_facet Maestripieri, Alejandra Laura
Martinez Peria, Francisco Dardo
author_role author
author2 Martinez Peria, Francisco Dardo
author2_role author
dc.subject.none.fl_str_mv INDEFINITE METRIC
KREIN SPACE
OBLIQUE PROJECTIONS
SELFADJOINT
topic INDEFINITE METRIC
KREIN SPACE
OBLIQUE PROJECTIONS
SELFADJOINT
purl_subject.fl_str_mv https://purl.org/becyt/ford/1.1
https://purl.org/becyt/ford/1
dc.description.none.fl_txt_mv Given a Hilbert space (H, ⟨ , ⟩) and a bounded selfadjoint operator B consider the sesquilinear form over H induced by B, ⟨ x , y ⟩_B=?Bx,y?, x,y ∈ H. A bounded operator T is B-selfadjoint if it is selfadjoint respect to this sesquilinear form. We study the set P(B,S) of B-selfadjoint projections with range S, where S is a closed subspace of H. We state several conditions which characterize the existence of B-selfadjoint projections with a given range; among them certain decompositions of H, R(|B|) and R(|B|^{1/2}). We also show that every B-selfadjoint projection can be factorized as the product of a B-contractive, a B-expansive and a B-isometric projection. Finally two different formulas for B-selfadjoint  projections are given.
Fil: Maestripieri, Alejandra Laura. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Martinez Peria, Francisco Dardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; Argentina
description Given a Hilbert space (H, ⟨ , ⟩) and a bounded selfadjoint operator B consider the sesquilinear form over H induced by B, ⟨ x , y ⟩_B=?Bx,y?, x,y ∈ H. A bounded operator T is B-selfadjoint if it is selfadjoint respect to this sesquilinear form. We study the set P(B,S) of B-selfadjoint projections with range S, where S is a closed subspace of H. We state several conditions which characterize the existence of B-selfadjoint projections with a given range; among them certain decompositions of H, R(|B|) and R(|B|^{1/2}). We also show that every B-selfadjoint projection can be factorized as the product of a B-contractive, a B-expansive and a B-isometric projection. Finally two different formulas for B-selfadjoint  projections are given.
publishDate 2006
dc.date.none.fl_str_mv 2006-12
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
http://purl.org/coar/resource_type/c_6501
info:ar-repo/semantics/articulo
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv http://hdl.handle.net/11336/108544
Maestripieri, Alejandra Laura; Martinez Peria, Francisco Dardo; Decomposition of selfadjoint projections in Krein spaces; János Bolyai Mathematical Institute; Acta Scientiarum Mathematicarum (Szeged); 72; 3-4; 12-2006; 611-638
0001-6969
CONICET Digital
CONICET
url http://hdl.handle.net/11336/108544
identifier_str_mv Maestripieri, Alejandra Laura; Martinez Peria, Francisco Dardo; Decomposition of selfadjoint projections in Krein spaces; János Bolyai Mathematical Institute; Acta Scientiarum Mathematicarum (Szeged); 72; 3-4; 12-2006; 611-638
0001-6969
CONICET Digital
CONICET
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://pub.acta.hu/acta/showCustomerArticle.action?id=4393&dataObjectType=article&returnAction=showCustomerVolume&sessionDataSetId=27d6075abbf01f54&style=
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.format.none.fl_str_mv application/pdf
application/pdf
application/pdf
dc.publisher.none.fl_str_mv János Bolyai Mathematical Institute
publisher.none.fl_str_mv János Bolyai Mathematical Institute
dc.source.none.fl_str_mv reponame:CONICET Digital (CONICET)
instname:Consejo Nacional de Investigaciones Científicas y Técnicas
reponame_str CONICET Digital (CONICET)
collection CONICET Digital (CONICET)
instname_str Consejo Nacional de Investigaciones Científicas y Técnicas
repository.name.fl_str_mv CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas
repository.mail.fl_str_mv dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar
_version_ 1842269307573108736
score 13.13397