Decomposition of selfadjoint projections in Krein spaces
- Autores
- Maestripieri, Alejandra Laura; Martinez Peria, Francisco Dardo
- Año de publicación
- 2006
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Given a Hilbert space (H, ⟨ , ⟩) and a bounded selfadjoint operator B consider the sesquilinear form over H induced by B, ⟨ x , y ⟩_B=?Bx,y?, x,y ∈ H. A bounded operator T is B-selfadjoint if it is selfadjoint respect to this sesquilinear form. We study the set P(B,S) of B-selfadjoint projections with range S, where S is a closed subspace of H. We state several conditions which characterize the existence of B-selfadjoint projections with a given range; among them certain decompositions of H, R(|B|) and R(|B|^{1/2}). We also show that every B-selfadjoint projection can be factorized as the product of a B-contractive, a B-expansive and a B-isometric projection. Finally two different formulas for B-selfadjoint projections are given.
Fil: Maestripieri, Alejandra Laura. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina
Fil: Martinez Peria, Francisco Dardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; Argentina - Materia
-
INDEFINITE METRIC
KREIN SPACE
OBLIQUE PROJECTIONS
SELFADJOINT - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/108544
Ver los metadatos del registro completo
id |
CONICETDig_0105b16ad019148655943c6d08c37ca4 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/108544 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Decomposition of selfadjoint projections in Krein spacesMaestripieri, Alejandra LauraMartinez Peria, Francisco DardoINDEFINITE METRICKREIN SPACEOBLIQUE PROJECTIONSSELFADJOINThttps://purl.org/becyt/ford/1.1https://purl.org/becyt/ford/1Given a Hilbert space (H, ⟨ , ⟩) and a bounded selfadjoint operator B consider the sesquilinear form over H induced by B, ⟨ x , y ⟩_B=?Bx,y?, x,y ∈ H. A bounded operator T is B-selfadjoint if it is selfadjoint respect to this sesquilinear form. We study the set P(B,S) of B-selfadjoint projections with range S, where S is a closed subspace of H. We state several conditions which characterize the existence of B-selfadjoint projections with a given range; among them certain decompositions of H, R(|B|) and R(|B|^{1/2}). We also show that every B-selfadjoint projection can be factorized as the product of a B-contractive, a B-expansive and a B-isometric projection. Finally two different formulas for B-selfadjoint projections are given.Fil: Maestripieri, Alejandra Laura. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; ArgentinaFil: Martinez Peria, Francisco Dardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; ArgentinaJános Bolyai Mathematical Institute2006-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/108544Maestripieri, Alejandra Laura; Martinez Peria, Francisco Dardo; Decomposition of selfadjoint projections in Krein spaces; János Bolyai Mathematical Institute; Acta Scientiarum Mathematicarum (Szeged); 72; 3-4; 12-2006; 611-6380001-6969CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://pub.acta.hu/acta/showCustomerArticle.action?id=4393&dataObjectType=article&returnAction=showCustomerVolume&sessionDataSetId=27d6075abbf01f54&style=info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:54:47Zoai:ri.conicet.gov.ar:11336/108544instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:54:48.071CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Decomposition of selfadjoint projections in Krein spaces |
title |
Decomposition of selfadjoint projections in Krein spaces |
spellingShingle |
Decomposition of selfadjoint projections in Krein spaces Maestripieri, Alejandra Laura INDEFINITE METRIC KREIN SPACE OBLIQUE PROJECTIONS SELFADJOINT |
title_short |
Decomposition of selfadjoint projections in Krein spaces |
title_full |
Decomposition of selfadjoint projections in Krein spaces |
title_fullStr |
Decomposition of selfadjoint projections in Krein spaces |
title_full_unstemmed |
Decomposition of selfadjoint projections in Krein spaces |
title_sort |
Decomposition of selfadjoint projections in Krein spaces |
dc.creator.none.fl_str_mv |
Maestripieri, Alejandra Laura Martinez Peria, Francisco Dardo |
author |
Maestripieri, Alejandra Laura |
author_facet |
Maestripieri, Alejandra Laura Martinez Peria, Francisco Dardo |
author_role |
author |
author2 |
Martinez Peria, Francisco Dardo |
author2_role |
author |
dc.subject.none.fl_str_mv |
INDEFINITE METRIC KREIN SPACE OBLIQUE PROJECTIONS SELFADJOINT |
topic |
INDEFINITE METRIC KREIN SPACE OBLIQUE PROJECTIONS SELFADJOINT |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.1 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Given a Hilbert space (H, ⟨ , ⟩) and a bounded selfadjoint operator B consider the sesquilinear form over H induced by B, ⟨ x , y ⟩_B=?Bx,y?, x,y ∈ H. A bounded operator T is B-selfadjoint if it is selfadjoint respect to this sesquilinear form. We study the set P(B,S) of B-selfadjoint projections with range S, where S is a closed subspace of H. We state several conditions which characterize the existence of B-selfadjoint projections with a given range; among them certain decompositions of H, R(|B|) and R(|B|^{1/2}). We also show that every B-selfadjoint projection can be factorized as the product of a B-contractive, a B-expansive and a B-isometric projection. Finally two different formulas for B-selfadjoint projections are given. Fil: Maestripieri, Alejandra Laura. Universidad de Buenos Aires. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina Fil: Martinez Peria, Francisco Dardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Instituto Argentino de Matemática Alberto Calderón; Argentina. Universidad Nacional de La Plata; Argentina |
description |
Given a Hilbert space (H, ⟨ , ⟩) and a bounded selfadjoint operator B consider the sesquilinear form over H induced by B, ⟨ x , y ⟩_B=?Bx,y?, x,y ∈ H. A bounded operator T is B-selfadjoint if it is selfadjoint respect to this sesquilinear form. We study the set P(B,S) of B-selfadjoint projections with range S, where S is a closed subspace of H. We state several conditions which characterize the existence of B-selfadjoint projections with a given range; among them certain decompositions of H, R(|B|) and R(|B|^{1/2}). We also show that every B-selfadjoint projection can be factorized as the product of a B-contractive, a B-expansive and a B-isometric projection. Finally two different formulas for B-selfadjoint projections are given. |
publishDate |
2006 |
dc.date.none.fl_str_mv |
2006-12 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/108544 Maestripieri, Alejandra Laura; Martinez Peria, Francisco Dardo; Decomposition of selfadjoint projections in Krein spaces; János Bolyai Mathematical Institute; Acta Scientiarum Mathematicarum (Szeged); 72; 3-4; 12-2006; 611-638 0001-6969 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/108544 |
identifier_str_mv |
Maestripieri, Alejandra Laura; Martinez Peria, Francisco Dardo; Decomposition of selfadjoint projections in Krein spaces; János Bolyai Mathematical Institute; Acta Scientiarum Mathematicarum (Szeged); 72; 3-4; 12-2006; 611-638 0001-6969 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://pub.acta.hu/acta/showCustomerArticle.action?id=4393&dataObjectType=article&returnAction=showCustomerVolume&sessionDataSetId=27d6075abbf01f54&style= |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
János Bolyai Mathematical Institute |
publisher.none.fl_str_mv |
János Bolyai Mathematical Institute |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842269307573108736 |
score |
13.13397 |