Land-cover classification using freely available multitemporal sar data (work in progress)
- Autores
- Rajngewerc, Mariela; Grimson, Rafael; Bali, Juan Lucas; Minotti, Priscila; Kandus, Patricia
- Año de publicación
- 2021
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- Synthetic Aperture Radar (SAR) images are a valuable tool for wetlands monitoring since they are able to detect water below the vegetation. Furthermore, SAR images can be acquired regardless of the weather conditions. The monitoring and study of wetlands have become increasingly important due to the social and ecological benefits they provide and the constant pressures they are subject to. The Sentinel-1 mission from the European Space Agency enables the possibility of having free access to multitemporal SAR data. This study aims to investigate the use of multitemporal Sentinel-1 data for wetlands land-cover classification. To perform this assessment, we acquired 76 Sentinel-1 images from a portion of the Lower Delta of the Parana River, and considering different ´ seasons, texture measurements, and polarization, 30 datasets were created. For each dataset, a Random Forest classifier was trained. Our experiments show that datasets that included the winter dates achieved kappa index values (κ) higher than 0.8. Including textures measurements showed improvements in the classifications: for the summer datasets, the κ increased more than 14%, whereas, for Winter datasets in the VH and Dual polarization, the improvements were lower than 4%. Our results suggest that for the analyzed land-cover classes, winter is the most informative season. Moreover, for Summer datasets, the textures measurements provide complementary information.
Fil: Rajngewerc, Mariela. Universidad Nacional de San Martín. Instituto de Investigación e Ingeniería Ambiental. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación e Ingeniería Ambiental; Argentina
Fil: Grimson, Rafael. Universidad Nacional de San Martín. Instituto de Investigación e Ingeniería Ambiental. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación e Ingeniería Ambiental; Argentina
Fil: Bali, Juan Lucas. YPF - Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
Fil: Minotti, Priscila. Universidad Nacional de San Martín. Instituto de Investigación en Ingeniería Ambiental; Argentina
Fil: Kandus, Patricia. Universidad Nacional de San Martín. Instituto de Investigación en Ingeniería Ambiental; Argentina - Materia
-
CLASSIFICATION
GLCM
SAR
SENTINEL-1
TEXTURES
WETLANDS - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/166283
Ver los metadatos del registro completo
id |
CONICETDig_30f47a4071e1bc64ed53c9fca89bb9a0 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/166283 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Land-cover classification using freely available multitemporal sar data (work in progress)Rajngewerc, MarielaGrimson, RafaelBali, Juan LucasMinotti, PriscilaKandus, PatriciaCLASSIFICATIONGLCMSARSENTINEL-1TEXTURESWETLANDShttps://purl.org/becyt/ford/1.7https://purl.org/becyt/ford/1Synthetic Aperture Radar (SAR) images are a valuable tool for wetlands monitoring since they are able to detect water below the vegetation. Furthermore, SAR images can be acquired regardless of the weather conditions. The monitoring and study of wetlands have become increasingly important due to the social and ecological benefits they provide and the constant pressures they are subject to. The Sentinel-1 mission from the European Space Agency enables the possibility of having free access to multitemporal SAR data. This study aims to investigate the use of multitemporal Sentinel-1 data for wetlands land-cover classification. To perform this assessment, we acquired 76 Sentinel-1 images from a portion of the Lower Delta of the Parana River, and considering different ´ seasons, texture measurements, and polarization, 30 datasets were created. For each dataset, a Random Forest classifier was trained. Our experiments show that datasets that included the winter dates achieved kappa index values (κ) higher than 0.8. Including textures measurements showed improvements in the classifications: for the summer datasets, the κ increased more than 14%, whereas, for Winter datasets in the VH and Dual polarization, the improvements were lower than 4%. Our results suggest that for the analyzed land-cover classes, winter is the most informative season. Moreover, for Summer datasets, the textures measurements provide complementary information.Fil: Rajngewerc, Mariela. Universidad Nacional de San Martín. Instituto de Investigación e Ingeniería Ambiental. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación e Ingeniería Ambiental; ArgentinaFil: Grimson, Rafael. Universidad Nacional de San Martín. Instituto de Investigación e Ingeniería Ambiental. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación e Ingeniería Ambiental; ArgentinaFil: Bali, Juan Lucas. YPF - Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Minotti, Priscila. Universidad Nacional de San Martín. Instituto de Investigación en Ingeniería Ambiental; ArgentinaFil: Kandus, Patricia. Universidad Nacional de San Martín. Instituto de Investigación en Ingeniería Ambiental; ArgentinaCopernicus Publications2021-08-19info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/166283Rajngewerc, Mariela; Grimson, Rafael; Bali, Juan Lucas; Minotti, Priscila; Kandus, Patricia; Land-cover classification using freely available multitemporal sar data (work in progress); Copernicus Publications; International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences; 46; 4/W2-2021; 19-8-2021; 133-1381682-17502194-9034CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLVI-4-W2-2021/133/2021/info:eu-repo/semantics/altIdentifier/doi/10.5194/isprs-archives-XLVI-4-W2-2021-133-2021info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-29T10:01:11Zoai:ri.conicet.gov.ar:11336/166283instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-29 10:01:11.706CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Land-cover classification using freely available multitemporal sar data (work in progress) |
title |
Land-cover classification using freely available multitemporal sar data (work in progress) |
spellingShingle |
Land-cover classification using freely available multitemporal sar data (work in progress) Rajngewerc, Mariela CLASSIFICATION GLCM SAR SENTINEL-1 TEXTURES WETLANDS |
title_short |
Land-cover classification using freely available multitemporal sar data (work in progress) |
title_full |
Land-cover classification using freely available multitemporal sar data (work in progress) |
title_fullStr |
Land-cover classification using freely available multitemporal sar data (work in progress) |
title_full_unstemmed |
Land-cover classification using freely available multitemporal sar data (work in progress) |
title_sort |
Land-cover classification using freely available multitemporal sar data (work in progress) |
dc.creator.none.fl_str_mv |
Rajngewerc, Mariela Grimson, Rafael Bali, Juan Lucas Minotti, Priscila Kandus, Patricia |
author |
Rajngewerc, Mariela |
author_facet |
Rajngewerc, Mariela Grimson, Rafael Bali, Juan Lucas Minotti, Priscila Kandus, Patricia |
author_role |
author |
author2 |
Grimson, Rafael Bali, Juan Lucas Minotti, Priscila Kandus, Patricia |
author2_role |
author author author author |
dc.subject.none.fl_str_mv |
CLASSIFICATION GLCM SAR SENTINEL-1 TEXTURES WETLANDS |
topic |
CLASSIFICATION GLCM SAR SENTINEL-1 TEXTURES WETLANDS |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/1.7 https://purl.org/becyt/ford/1 |
dc.description.none.fl_txt_mv |
Synthetic Aperture Radar (SAR) images are a valuable tool for wetlands monitoring since they are able to detect water below the vegetation. Furthermore, SAR images can be acquired regardless of the weather conditions. The monitoring and study of wetlands have become increasingly important due to the social and ecological benefits they provide and the constant pressures they are subject to. The Sentinel-1 mission from the European Space Agency enables the possibility of having free access to multitemporal SAR data. This study aims to investigate the use of multitemporal Sentinel-1 data for wetlands land-cover classification. To perform this assessment, we acquired 76 Sentinel-1 images from a portion of the Lower Delta of the Parana River, and considering different ´ seasons, texture measurements, and polarization, 30 datasets were created. For each dataset, a Random Forest classifier was trained. Our experiments show that datasets that included the winter dates achieved kappa index values (κ) higher than 0.8. Including textures measurements showed improvements in the classifications: for the summer datasets, the κ increased more than 14%, whereas, for Winter datasets in the VH and Dual polarization, the improvements were lower than 4%. Our results suggest that for the analyzed land-cover classes, winter is the most informative season. Moreover, for Summer datasets, the textures measurements provide complementary information. Fil: Rajngewerc, Mariela. Universidad Nacional de San Martín. Instituto de Investigación e Ingeniería Ambiental. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación e Ingeniería Ambiental; Argentina Fil: Grimson, Rafael. Universidad Nacional de San Martín. Instituto de Investigación e Ingeniería Ambiental. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigación e Ingeniería Ambiental; Argentina Fil: Bali, Juan Lucas. YPF - Tecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Minotti, Priscila. Universidad Nacional de San Martín. Instituto de Investigación en Ingeniería Ambiental; Argentina Fil: Kandus, Patricia. Universidad Nacional de San Martín. Instituto de Investigación en Ingeniería Ambiental; Argentina |
description |
Synthetic Aperture Radar (SAR) images are a valuable tool for wetlands monitoring since they are able to detect water below the vegetation. Furthermore, SAR images can be acquired regardless of the weather conditions. The monitoring and study of wetlands have become increasingly important due to the social and ecological benefits they provide and the constant pressures they are subject to. The Sentinel-1 mission from the European Space Agency enables the possibility of having free access to multitemporal SAR data. This study aims to investigate the use of multitemporal Sentinel-1 data for wetlands land-cover classification. To perform this assessment, we acquired 76 Sentinel-1 images from a portion of the Lower Delta of the Parana River, and considering different ´ seasons, texture measurements, and polarization, 30 datasets were created. For each dataset, a Random Forest classifier was trained. Our experiments show that datasets that included the winter dates achieved kappa index values (κ) higher than 0.8. Including textures measurements showed improvements in the classifications: for the summer datasets, the κ increased more than 14%, whereas, for Winter datasets in the VH and Dual polarization, the improvements were lower than 4%. Our results suggest that for the analyzed land-cover classes, winter is the most informative season. Moreover, for Summer datasets, the textures measurements provide complementary information. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-08-19 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/166283 Rajngewerc, Mariela; Grimson, Rafael; Bali, Juan Lucas; Minotti, Priscila; Kandus, Patricia; Land-cover classification using freely available multitemporal sar data (work in progress); Copernicus Publications; International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences; 46; 4/W2-2021; 19-8-2021; 133-138 1682-1750 2194-9034 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/166283 |
identifier_str_mv |
Rajngewerc, Mariela; Grimson, Rafael; Bali, Juan Lucas; Minotti, Priscila; Kandus, Patricia; Land-cover classification using freely available multitemporal sar data (work in progress); Copernicus Publications; International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences; 46; 4/W2-2021; 19-8-2021; 133-138 1682-1750 2194-9034 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLVI-4-W2-2021/133/2021/ info:eu-repo/semantics/altIdentifier/doi/10.5194/isprs-archives-XLVI-4-W2-2021-133-2021 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Copernicus Publications |
publisher.none.fl_str_mv |
Copernicus Publications |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1844613802875682816 |
score |
13.070432 |