Fisher Vectors for PolSAR Image Classification
- Autores
- Redolfi, Javier A.; Sánchez, Jorge; Flesia, Ana Georgina
- Año de publicación
- 2018
- Idioma
- inglés
- Tipo de recurso
- documento de conferencia
- Estado
- versión publicada
- Descripción
- In this letter we study the application of the Fisher Vector (FV) to the problem of pixel-wise supervised classification of PolSAR images. This is a challenging problem since information in those images is encoded as complex-valued covariance matrices. We observe that the real part of these matrices preserve the positive semidefiniteness property of their complex counterpart. Based on this observation, we derive a FV from a mixture of real Wishart pdfs and integrate it with a Potts-like energy model in order to capture spatial dependencies between neighboring regions. Experimental results on two challenging datasets show the effectiveness of the approach.
Sociedad Argentina de Informática e Investigación Operativa - Materia
-
Ciencias Informáticas
PolSAR
fisher vectors
image classification - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- http://creativecommons.org/licenses/by-sa/3.0/
- Repositorio
- Institución
- Universidad Nacional de La Plata
- OAI Identificador
- oai:sedici.unlp.edu.ar:10915/71074
Ver los metadatos del registro completo
id |
SEDICI_009bb096f71b4a2acd8b6383051f809c |
---|---|
oai_identifier_str |
oai:sedici.unlp.edu.ar:10915/71074 |
network_acronym_str |
SEDICI |
repository_id_str |
1329 |
network_name_str |
SEDICI (UNLP) |
spelling |
Fisher Vectors for PolSAR Image ClassificationRedolfi, Javier A.Sánchez, JorgeFlesia, Ana GeorginaCiencias InformáticasPolSARfisher vectorsimage classificationIn this letter we study the application of the Fisher Vector (FV) to the problem of pixel-wise supervised classification of PolSAR images. This is a challenging problem since information in those images is encoded as complex-valued covariance matrices. We observe that the real part of these matrices preserve the positive semidefiniteness property of their complex counterpart. Based on this observation, we derive a FV from a mixture of real Wishart pdfs and integrate it with a Potts-like energy model in order to capture spatial dependencies between neighboring regions. Experimental results on two challenging datasets show the effectiveness of the approach.Sociedad Argentina de Informática e Investigación Operativa2018-09info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionResumenhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/71074enginfo:eu-repo/semantics/altIdentifier/url/http://47jaiio.sadio.org.ar/sites/default/files/CAI-14.pdfinfo:eu-repo/semantics/altIdentifier/issn/2525-0949info:eu-repo/semantics/reference/doi/10.1109/LGRS.2017.2750800info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-sa/3.0/Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:43:30Zoai:sedici.unlp.edu.ar:10915/71074Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:43:30.251SEDICI (UNLP) - Universidad Nacional de La Platafalse |
dc.title.none.fl_str_mv |
Fisher Vectors for PolSAR Image Classification |
title |
Fisher Vectors for PolSAR Image Classification |
spellingShingle |
Fisher Vectors for PolSAR Image Classification Redolfi, Javier A. Ciencias Informáticas PolSAR fisher vectors image classification |
title_short |
Fisher Vectors for PolSAR Image Classification |
title_full |
Fisher Vectors for PolSAR Image Classification |
title_fullStr |
Fisher Vectors for PolSAR Image Classification |
title_full_unstemmed |
Fisher Vectors for PolSAR Image Classification |
title_sort |
Fisher Vectors for PolSAR Image Classification |
dc.creator.none.fl_str_mv |
Redolfi, Javier A. Sánchez, Jorge Flesia, Ana Georgina |
author |
Redolfi, Javier A. |
author_facet |
Redolfi, Javier A. Sánchez, Jorge Flesia, Ana Georgina |
author_role |
author |
author2 |
Sánchez, Jorge Flesia, Ana Georgina |
author2_role |
author author |
dc.subject.none.fl_str_mv |
Ciencias Informáticas PolSAR fisher vectors image classification |
topic |
Ciencias Informáticas PolSAR fisher vectors image classification |
dc.description.none.fl_txt_mv |
In this letter we study the application of the Fisher Vector (FV) to the problem of pixel-wise supervised classification of PolSAR images. This is a challenging problem since information in those images is encoded as complex-valued covariance matrices. We observe that the real part of these matrices preserve the positive semidefiniteness property of their complex counterpart. Based on this observation, we derive a FV from a mixture of real Wishart pdfs and integrate it with a Potts-like energy model in order to capture spatial dependencies between neighboring regions. Experimental results on two challenging datasets show the effectiveness of the approach. Sociedad Argentina de Informática e Investigación Operativa |
description |
In this letter we study the application of the Fisher Vector (FV) to the problem of pixel-wise supervised classification of PolSAR images. This is a challenging problem since information in those images is encoded as complex-valued covariance matrices. We observe that the real part of these matrices preserve the positive semidefiniteness property of their complex counterpart. Based on this observation, we derive a FV from a mixture of real Wishart pdfs and integrate it with a Potts-like energy model in order to capture spatial dependencies between neighboring regions. Experimental results on two challenging datasets show the effectiveness of the approach. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-09 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/publishedVersion Resumen http://purl.org/coar/resource_type/c_5794 info:ar-repo/semantics/documentoDeConferencia |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://sedici.unlp.edu.ar/handle/10915/71074 |
url |
http://sedici.unlp.edu.ar/handle/10915/71074 |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://47jaiio.sadio.org.ar/sites/default/files/CAI-14.pdf info:eu-repo/semantics/altIdentifier/issn/2525-0949 info:eu-repo/semantics/reference/doi/10.1109/LGRS.2017.2750800 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-sa/3.0/ Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-sa/3.0/ Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:SEDICI (UNLP) instname:Universidad Nacional de La Plata instacron:UNLP |
reponame_str |
SEDICI (UNLP) |
collection |
SEDICI (UNLP) |
instname_str |
Universidad Nacional de La Plata |
instacron_str |
UNLP |
institution |
UNLP |
repository.name.fl_str_mv |
SEDICI (UNLP) - Universidad Nacional de La Plata |
repository.mail.fl_str_mv |
alira@sedici.unlp.edu.ar |
_version_ |
1842260306346115072 |
score |
13.13397 |