Fisher Vectors for PolSAR Image Classification

Autores
Redolfi, Javier A.; Sánchez, Jorge; Flesia, Ana Georgina
Año de publicación
2018
Idioma
inglés
Tipo de recurso
documento de conferencia
Estado
versión publicada
Descripción
In this letter we study the application of the Fisher Vector (FV) to the problem of pixel-wise supervised classification of PolSAR images. This is a challenging problem since information in those images is encoded as complex-valued covariance matrices. We observe that the real part of these matrices preserve the positive semidefiniteness property of their complex counterpart. Based on this observation, we derive a FV from a mixture of real Wishart pdfs and integrate it with a Potts-like energy model in order to capture spatial dependencies between neighboring regions. Experimental results on two challenging datasets show the effectiveness of the approach.
Sociedad Argentina de Informática e Investigación Operativa
Materia
Ciencias Informáticas
PolSAR
fisher vectors
image classification
Nivel de accesibilidad
acceso abierto
Condiciones de uso
http://creativecommons.org/licenses/by-sa/3.0/
Repositorio
SEDICI (UNLP)
Institución
Universidad Nacional de La Plata
OAI Identificador
oai:sedici.unlp.edu.ar:10915/71074

id SEDICI_009bb096f71b4a2acd8b6383051f809c
oai_identifier_str oai:sedici.unlp.edu.ar:10915/71074
network_acronym_str SEDICI
repository_id_str 1329
network_name_str SEDICI (UNLP)
spelling Fisher Vectors for PolSAR Image ClassificationRedolfi, Javier A.Sánchez, JorgeFlesia, Ana GeorginaCiencias InformáticasPolSARfisher vectorsimage classificationIn this letter we study the application of the Fisher Vector (FV) to the problem of pixel-wise supervised classification of PolSAR images. This is a challenging problem since information in those images is encoded as complex-valued covariance matrices. We observe that the real part of these matrices preserve the positive semidefiniteness property of their complex counterpart. Based on this observation, we derive a FV from a mixture of real Wishart pdfs and integrate it with a Potts-like energy model in order to capture spatial dependencies between neighboring regions. Experimental results on two challenging datasets show the effectiveness of the approach.Sociedad Argentina de Informática e Investigación Operativa2018-09info:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionResumenhttp://purl.org/coar/resource_type/c_5794info:ar-repo/semantics/documentoDeConferenciaapplication/pdfhttp://sedici.unlp.edu.ar/handle/10915/71074enginfo:eu-repo/semantics/altIdentifier/url/http://47jaiio.sadio.org.ar/sites/default/files/CAI-14.pdfinfo:eu-repo/semantics/altIdentifier/issn/2525-0949info:eu-repo/semantics/reference/doi/10.1109/LGRS.2017.2750800info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-sa/3.0/Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)reponame:SEDICI (UNLP)instname:Universidad Nacional de La Platainstacron:UNLP2025-09-03T10:43:30Zoai:sedici.unlp.edu.ar:10915/71074Institucionalhttp://sedici.unlp.edu.ar/Universidad públicaNo correspondehttp://sedici.unlp.edu.ar/oai/snrdalira@sedici.unlp.edu.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:13292025-09-03 10:43:30.251SEDICI (UNLP) - Universidad Nacional de La Platafalse
dc.title.none.fl_str_mv Fisher Vectors for PolSAR Image Classification
title Fisher Vectors for PolSAR Image Classification
spellingShingle Fisher Vectors for PolSAR Image Classification
Redolfi, Javier A.
Ciencias Informáticas
PolSAR
fisher vectors
image classification
title_short Fisher Vectors for PolSAR Image Classification
title_full Fisher Vectors for PolSAR Image Classification
title_fullStr Fisher Vectors for PolSAR Image Classification
title_full_unstemmed Fisher Vectors for PolSAR Image Classification
title_sort Fisher Vectors for PolSAR Image Classification
dc.creator.none.fl_str_mv Redolfi, Javier A.
Sánchez, Jorge
Flesia, Ana Georgina
author Redolfi, Javier A.
author_facet Redolfi, Javier A.
Sánchez, Jorge
Flesia, Ana Georgina
author_role author
author2 Sánchez, Jorge
Flesia, Ana Georgina
author2_role author
author
dc.subject.none.fl_str_mv Ciencias Informáticas
PolSAR
fisher vectors
image classification
topic Ciencias Informáticas
PolSAR
fisher vectors
image classification
dc.description.none.fl_txt_mv In this letter we study the application of the Fisher Vector (FV) to the problem of pixel-wise supervised classification of PolSAR images. This is a challenging problem since information in those images is encoded as complex-valued covariance matrices. We observe that the real part of these matrices preserve the positive semidefiniteness property of their complex counterpart. Based on this observation, we derive a FV from a mixture of real Wishart pdfs and integrate it with a Potts-like energy model in order to capture spatial dependencies between neighboring regions. Experimental results on two challenging datasets show the effectiveness of the approach.
Sociedad Argentina de Informática e Investigación Operativa
description In this letter we study the application of the Fisher Vector (FV) to the problem of pixel-wise supervised classification of PolSAR images. This is a challenging problem since information in those images is encoded as complex-valued covariance matrices. We observe that the real part of these matrices preserve the positive semidefiniteness property of their complex counterpart. Based on this observation, we derive a FV from a mixture of real Wishart pdfs and integrate it with a Potts-like energy model in order to capture spatial dependencies between neighboring regions. Experimental results on two challenging datasets show the effectiveness of the approach.
publishDate 2018
dc.date.none.fl_str_mv 2018-09
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
info:eu-repo/semantics/publishedVersion
Resumen
http://purl.org/coar/resource_type/c_5794
info:ar-repo/semantics/documentoDeConferencia
format conferenceObject
status_str publishedVersion
dc.identifier.none.fl_str_mv http://sedici.unlp.edu.ar/handle/10915/71074
url http://sedici.unlp.edu.ar/handle/10915/71074
dc.language.none.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv info:eu-repo/semantics/altIdentifier/url/http://47jaiio.sadio.org.ar/sites/default/files/CAI-14.pdf
info:eu-repo/semantics/altIdentifier/issn/2525-0949
info:eu-repo/semantics/reference/doi/10.1109/LGRS.2017.2750800
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-sa/3.0/
Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-sa/3.0/
Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:SEDICI (UNLP)
instname:Universidad Nacional de La Plata
instacron:UNLP
reponame_str SEDICI (UNLP)
collection SEDICI (UNLP)
instname_str Universidad Nacional de La Plata
instacron_str UNLP
institution UNLP
repository.name.fl_str_mv SEDICI (UNLP) - Universidad Nacional de La Plata
repository.mail.fl_str_mv alira@sedici.unlp.edu.ar
_version_ 1842260306346115072
score 13.13397