Unsupervised classification algorithm based on EM method for polarimetric SAR images
- Autores
- Fernández Michelli, Juan Ignacio; Hurtado, Martin; Areta, Javier Alberto; Muravchik, Carlos Horacio
- Año de publicación
- 2016
- Idioma
- inglés
- Tipo de recurso
- artículo
- Estado
- versión publicada
- Descripción
- In this work we develop an iterative classification algorithm using complex Gaussian mixture models for the polarimetric complex SAR data. It is a non supervised algorithm which does not require training data or an initial set of classes. Additionally, it determines the model order from data, which allows representing data structure with minimum complexity. The algorithm consists of four steps: initialization, model selection, refinement and smoothing. After a simple initialization stage, the EM algorithm is iteratively applied in the model selection step to compute the model order and an initial classification for the refinement step. The refinement step uses Classification EM (CEM) to reach the final classification and the smoothing stage improves the results by means of non-linear filtering. The algorithm is applied to both simulated and real Single Look Complex data of the EMISAR mission and compared with the Wishart classification method. We use confusion matrix and kappa statistic to make the comparison for simulated data whose ground-truth is known. We apply Davies-Bouldin index to compare both classifications for real data. The results obtained for both types of data validate our algorithm and show that its performance is comparable to Wishart's in terms of classification quality.
Fil: Fernández Michelli, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina
Fil: Hurtado, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina
Fil: Areta, Javier Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Río Negro; Argentina
Fil: Muravchik, Carlos Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina. Universidad Nacional de la Plata. Facultad de Ingeniería. Departamento de Electrotecnia. Laboratorio de Electrónica Industrial, Control e Instrumentación; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina - Materia
-
Bic
Classification
Expectation Maximization
Gaussian Mixture
Mixture Reduction
Sar Images - Nivel de accesibilidad
- acceso abierto
- Condiciones de uso
- https://creativecommons.org/licenses/by-nc-nd/2.5/ar/
- Repositorio
- Institución
- Consejo Nacional de Investigaciones Científicas y Técnicas
- OAI Identificador
- oai:ri.conicet.gov.ar:11336/24748
Ver los metadatos del registro completo
id |
CONICETDig_1057fa0b3b5f42f489700a8988192735 |
---|---|
oai_identifier_str |
oai:ri.conicet.gov.ar:11336/24748 |
network_acronym_str |
CONICETDig |
repository_id_str |
3498 |
network_name_str |
CONICET Digital (CONICET) |
spelling |
Unsupervised classification algorithm based on EM method for polarimetric SAR imagesFernández Michelli, Juan IgnacioHurtado, MartinAreta, Javier AlbertoMuravchik, Carlos HoracioBicClassificationExpectation MaximizationGaussian MixtureMixture ReductionSar Imageshttps://purl.org/becyt/ford/2.2https://purl.org/becyt/ford/2In this work we develop an iterative classification algorithm using complex Gaussian mixture models for the polarimetric complex SAR data. It is a non supervised algorithm which does not require training data or an initial set of classes. Additionally, it determines the model order from data, which allows representing data structure with minimum complexity. The algorithm consists of four steps: initialization, model selection, refinement and smoothing. After a simple initialization stage, the EM algorithm is iteratively applied in the model selection step to compute the model order and an initial classification for the refinement step. The refinement step uses Classification EM (CEM) to reach the final classification and the smoothing stage improves the results by means of non-linear filtering. The algorithm is applied to both simulated and real Single Look Complex data of the EMISAR mission and compared with the Wishart classification method. We use confusion matrix and kappa statistic to make the comparison for simulated data whose ground-truth is known. We apply Davies-Bouldin index to compare both classifications for real data. The results obtained for both types of data validate our algorithm and show that its performance is comparable to Wishart's in terms of classification quality.Fil: Fernández Michelli, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; ArgentinaFil: Hurtado, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; ArgentinaFil: Areta, Javier Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Río Negro; ArgentinaFil: Muravchik, Carlos Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina. Universidad Nacional de la Plata. Facultad de Ingeniería. Departamento de Electrotecnia. Laboratorio de Electrónica Industrial, Control e Instrumentación; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; ArgentinaElsevier Science2016-07info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501info:ar-repo/semantics/articuloapplication/pdfapplication/pdfapplication/pdfapplication/pdfapplication/pdfhttp://hdl.handle.net/11336/24748Fernández Michelli, Juan Ignacio; Hurtado, Martin; Areta, Javier Alberto; Muravchik, Carlos Horacio; Unsupervised classification algorithm based on EM method for polarimetric SAR images; Elsevier Science; Isprs Journal Of Photogrammetry And Remote Sensing; 117; 7-2016; 56-650924-2716CONICET DigitalCONICETenginfo:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0924271616000587info:eu-repo/semantics/altIdentifier/doi/10.1016/j.isprsjprs.2016.03.001info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/2.5/ar/reponame:CONICET Digital (CONICET)instname:Consejo Nacional de Investigaciones Científicas y Técnicas2025-09-03T09:45:01Zoai:ri.conicet.gov.ar:11336/24748instacron:CONICETInstitucionalhttp://ri.conicet.gov.ar/Organismo científico-tecnológicoNo correspondehttp://ri.conicet.gov.ar/oai/requestdasensio@conicet.gov.ar; lcarlino@conicet.gov.arArgentinaNo correspondeNo correspondeNo correspondeopendoar:34982025-09-03 09:45:01.856CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicasfalse |
dc.title.none.fl_str_mv |
Unsupervised classification algorithm based on EM method for polarimetric SAR images |
title |
Unsupervised classification algorithm based on EM method for polarimetric SAR images |
spellingShingle |
Unsupervised classification algorithm based on EM method for polarimetric SAR images Fernández Michelli, Juan Ignacio Bic Classification Expectation Maximization Gaussian Mixture Mixture Reduction Sar Images |
title_short |
Unsupervised classification algorithm based on EM method for polarimetric SAR images |
title_full |
Unsupervised classification algorithm based on EM method for polarimetric SAR images |
title_fullStr |
Unsupervised classification algorithm based on EM method for polarimetric SAR images |
title_full_unstemmed |
Unsupervised classification algorithm based on EM method for polarimetric SAR images |
title_sort |
Unsupervised classification algorithm based on EM method for polarimetric SAR images |
dc.creator.none.fl_str_mv |
Fernández Michelli, Juan Ignacio Hurtado, Martin Areta, Javier Alberto Muravchik, Carlos Horacio |
author |
Fernández Michelli, Juan Ignacio |
author_facet |
Fernández Michelli, Juan Ignacio Hurtado, Martin Areta, Javier Alberto Muravchik, Carlos Horacio |
author_role |
author |
author2 |
Hurtado, Martin Areta, Javier Alberto Muravchik, Carlos Horacio |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Bic Classification Expectation Maximization Gaussian Mixture Mixture Reduction Sar Images |
topic |
Bic Classification Expectation Maximization Gaussian Mixture Mixture Reduction Sar Images |
purl_subject.fl_str_mv |
https://purl.org/becyt/ford/2.2 https://purl.org/becyt/ford/2 |
dc.description.none.fl_txt_mv |
In this work we develop an iterative classification algorithm using complex Gaussian mixture models for the polarimetric complex SAR data. It is a non supervised algorithm which does not require training data or an initial set of classes. Additionally, it determines the model order from data, which allows representing data structure with minimum complexity. The algorithm consists of four steps: initialization, model selection, refinement and smoothing. After a simple initialization stage, the EM algorithm is iteratively applied in the model selection step to compute the model order and an initial classification for the refinement step. The refinement step uses Classification EM (CEM) to reach the final classification and the smoothing stage improves the results by means of non-linear filtering. The algorithm is applied to both simulated and real Single Look Complex data of the EMISAR mission and compared with the Wishart classification method. We use confusion matrix and kappa statistic to make the comparison for simulated data whose ground-truth is known. We apply Davies-Bouldin index to compare both classifications for real data. The results obtained for both types of data validate our algorithm and show that its performance is comparable to Wishart's in terms of classification quality. Fil: Fernández Michelli, Juan Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina Fil: Hurtado, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina Fil: Areta, Javier Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Río Negro; Argentina Fil: Muravchik, Carlos Horacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales. Universidad Nacional de La Plata. Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales; Argentina. Universidad Nacional de la Plata. Facultad de Ingeniería. Departamento de Electrotecnia. Laboratorio de Electrónica Industrial, Control e Instrumentación; Argentina. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina |
description |
In this work we develop an iterative classification algorithm using complex Gaussian mixture models for the polarimetric complex SAR data. It is a non supervised algorithm which does not require training data or an initial set of classes. Additionally, it determines the model order from data, which allows representing data structure with minimum complexity. The algorithm consists of four steps: initialization, model selection, refinement and smoothing. After a simple initialization stage, the EM algorithm is iteratively applied in the model selection step to compute the model order and an initial classification for the refinement step. The refinement step uses Classification EM (CEM) to reach the final classification and the smoothing stage improves the results by means of non-linear filtering. The algorithm is applied to both simulated and real Single Look Complex data of the EMISAR mission and compared with the Wishart classification method. We use confusion matrix and kappa statistic to make the comparison for simulated data whose ground-truth is known. We apply Davies-Bouldin index to compare both classifications for real data. The results obtained for both types of data validate our algorithm and show that its performance is comparable to Wishart's in terms of classification quality. |
publishDate |
2016 |
dc.date.none.fl_str_mv |
2016-07 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion http://purl.org/coar/resource_type/c_6501 info:ar-repo/semantics/articulo |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
http://hdl.handle.net/11336/24748 Fernández Michelli, Juan Ignacio; Hurtado, Martin; Areta, Javier Alberto; Muravchik, Carlos Horacio; Unsupervised classification algorithm based on EM method for polarimetric SAR images; Elsevier Science; Isprs Journal Of Photogrammetry And Remote Sensing; 117; 7-2016; 56-65 0924-2716 CONICET Digital CONICET |
url |
http://hdl.handle.net/11336/24748 |
identifier_str_mv |
Fernández Michelli, Juan Ignacio; Hurtado, Martin; Areta, Javier Alberto; Muravchik, Carlos Horacio; Unsupervised classification algorithm based on EM method for polarimetric SAR images; Elsevier Science; Isprs Journal Of Photogrammetry And Remote Sensing; 117; 7-2016; 56-65 0924-2716 CONICET Digital CONICET |
dc.language.none.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0924271616000587 info:eu-repo/semantics/altIdentifier/doi/10.1016/j.isprsjprs.2016.03.001 |
dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ |
dc.format.none.fl_str_mv |
application/pdf application/pdf application/pdf application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Elsevier Science |
publisher.none.fl_str_mv |
Elsevier Science |
dc.source.none.fl_str_mv |
reponame:CONICET Digital (CONICET) instname:Consejo Nacional de Investigaciones Científicas y Técnicas |
reponame_str |
CONICET Digital (CONICET) |
collection |
CONICET Digital (CONICET) |
instname_str |
Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.name.fl_str_mv |
CONICET Digital (CONICET) - Consejo Nacional de Investigaciones Científicas y Técnicas |
repository.mail.fl_str_mv |
dasensio@conicet.gov.ar; lcarlino@conicet.gov.ar |
_version_ |
1842268704462602240 |
score |
13.13397 |